Effects of repetitive transcranial magnetic stimulation on non-veridical decision making

Publications

Share / Export Citation / Email / Print / Text size:

Acta Neurobiologiae Experimentalis

Nencki Institute of Experimental Biology

Polish Neuroscience Society

Subject: Behavioral Sciences , Biomedical Sciences & Nutrition , Life Sciences , Medicine , Neurosciences

GET ALERTS

ISSN: 0065-1400
eISSN: 1689-0035

DESCRIPTION

11
Reader(s)
45
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 76 , ISSUE 3 (September 2016) > List of articles

Advertisement Effects of repetitive transcranial magnetic stimulation on non-veridical decision making

Jaan Tulviste * / Elkhonon Goldberg / Kenneth Podell / Talis Bachmann

Keywords : decision making, transcranial magnetic stimulation (TMS), prefrontal cortex, cognitive bias task, moving spot task, agent-centered decision making

Citation Information : Acta Neurobiologiae Experimentalis. Volume 76, Issue 3, Pages 182-191, DOI: https://doi.org/10.21307/ane-2017-018

License : (CC BY 4.0)

Received Date : 14-December-2015 / Accepted: 21-June-2016 / Published Online: 01-August-2017

ARTICLE

ABSTRACT

We test the emerging hypothesis that prefrontal cortical mechanisms involved in non-veridical decision making do not overlap with those of veridical decision making. Healthy female subjects performed an experimental task assessing free choice, agent-centered decision making (The Cognitive Bias Task) and a veridical control task related to visuospatial working memory (the Moving Spot Task). Transcranial magnetic stimulation (TMS) was applied to the left and right dorsolateral prefrontal cortex (DLPFC) using 1 Hz and 10 Hz (intermittent) rTMS and sham protocols. Both 1 Hz and 10 Hz stimulation of the DLPFC triggered a shift towards a more context-independent, internal representations driven non-veridical selection bias. A significantly reduced preference for choosing objects based on similarity was detected, following both 1 Hz and 10 Hz treatment of the right as well as 1 Hz rTMS of the left DLPFC. 1 Hz rTMS treatment of the right DLPFC also triggered a significant improvement in visuospatial working memory performance on the veridical task. The effects induced by
prefrontal TMS mimicked those of posterior lesions, suggesting that prefrontal stimulation influenced neuronal activity in remote cortical regions interconnected with the stimulation site via longitudinal fasciculi.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. Aihara M, Aoyagi K, Goldberg E, Nakazawa S (2003) Age shifts frontal cortical control in a cognitive bias task from right to left: part I. Neuropsychological study. Brain Dev 25(8): 555–559.
  2. Anderson SW, Damasio H, Jones RD, Tranel D (1991) Wisconsin Card Sorting Test performance as a measure of frontal lobe damage. J Clin Exp Neuropsychol 13(6): 909–922.
  3. Attneave F, Curlee TE (1983) Locational representation in imagery:a moving spot task. J Exp Psychol Hum Percept Perform 9(1): 20.
  4. Bachmann T, Oit M (1992) Stroop-like interference in chess players’ imagery: An unexplored possibility to be revealed by the adapted moving-spot task. Psychol Res 54(1): 27–31.
  5. Bechara A, Damasio AR, Damasio H, Anderson SW (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50(1): 7–15.
  6. Bechara A, Tranel D, Damasio H (2000) Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions.Brain 123(11): 2189–2202.
  7. Briggs GG, Nebes RD (1975) Patterns of hand preference in a student population. Cortex 11(3): 230–238.
  8. Camus M, Halelamien N, Plassmann H, Shimojo S, O’Doherty J, Camerer C,Rangel A (2009) Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex decreases valuations during food
    choices. Eur J Neurosci 30(10): 1980–1988.
  9. Cappa SF, Sandrini M, Rossini PM, Sosta K, Miniussi C (2002) The role of the left frontal lobe in action naming: rTMS evidence. Neurology 59:720–723.
  10. Carver CS, White TL (1994) Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS scales. J Pers Soc Psychol 67(2): 319.
  11. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48(5): 1398–1403.
  12. Chung SW, Rogasch NC, Hoy KE, Fitzgerald PB (2015) Measuring Brain Stimulation Induced Changes in Cortical Properties Using TMS-EEG. Brain Stimul 8(6): 1010–1020.
  13. Drewe EA (1974) The effect of type and area of brain lesion on Wisconsin card sorting test performance. Cortex 10(2): 159–170.
  14. Evans CE, Kemish K, Turnbull, OH (2004) Paradoxical effects of education on the Iowa Gambling Task. Brain Cogn 54(3): 240–244.
  15. Fellows LK (2004) The cognitive neuroscience of human decision making:a review and conceptual framework. Behav Cogn Neurosci Rev 3(3): 159–172.
  16. Fitzgerald PB, Fountain S, Daskalakis ZJ (2006) A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 117(12): 2584–2596.
  17. Goldberg E, Harner R, Lovell M, Podell K, Riggio S (1994) Cognitive bias,functional cortical geometry, and the frontal lobes: laterality, sex, and handedness. J Cogn Neurosci 6(3): 276–296.
  18. Goldberg E, Podell K (2000) Adaptive decision making, ecological validity, and the frontal lobes. J Clin Exp Neuropsychol 22(1): 56–68.
  19. Greve KW, Love JM, Sherwin E, Mathias CW, Ramzinski P, Levy J (2002) Wisconsin Card Sorting Test in chronic severe traumatic brain injury:factor structure and performance subgroups. Brain Inj 16(1): 29–40.
  20. Hare TA, Camerer CF, Rangel A (2009) Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324:646–648.
  21. Hutcherson CA, Plassmann H, Gross JJ, Rangel A (2012) Cognitive regulation during decision making shifts behavioral control between ventromedial and dorsolateral prefrontal value systems. J Neurosci 32(39): 13543–13554.
  22. Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Näätänen R,Katila T (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8: 3537–3540.
  23. Johnson SC, Schmitz TW, Kawahara-Baccus TN, Rowley HA, Alexander AL,Lee J, Davidson RJ (2005) The cerebral response during subjective choice with and without self-reference. J Cogn Neurosci 17(12): 1897–1906.
  24. Karton I, Bachmann T (2011) Effect of prefrontal transcranial magnetic stimulation on spontaneous truth-telling. Behav Brain Res 225(1):209–214.
  25. Knoch D, Gianotti LR, Pascual-Leone A, Treyer V, Regard M, Hohmann M,Brugger P (2006) Disruption of right prefrontal cortex by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior. J Neurosci 26(24): 6469–6472.
  26. Ko JH, Monchi O, Ptito A, Bloomfield P, Houle S, Strafella AP (2008) Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task: a TMS-[11C]raclopride PET study. Eur J Neurosci 28(10): 2147–2155.
  27. Kozyrev V, Eysel UT, Jancke D (2014) Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics. Proc Natl Acad Sci U S A 111(37): 13553–13558.
  28. Krawczyk DC (2002) Contributions of the prefrontal cortex to the neural basis of human decision making. Neurosci Biobehav Rev 26(6): 631–664.
  29. Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schönfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125(11): 2150–2206.
  30. Levy R, Goldman-Rakic PS (2000) Segregation of working memory functions within the dorsolateral prefrontal cortex. In: Executive control and the frontal lobe: Current issues. Springer Berlin Heidelberg, Germany, p. 23–32.
  31. Lezak MD, Howieson DB, Loring DW, Hannay HJ, Fischer JS (2004) Neuropsychological assessment (Lezak MD Ed.). Oxford University Press, New York, USA.
  32. Liu P, Jin F, Zhang X, Su Y, Wang M (2011) Research on the multi-attribute decision-making under risk with interval probability based on prospect and the uncertain linguistic variables. Knowledge-Based Systems
    24(4): 554–561.
  33. Miller EK (2000) The prefontral cortex and cognitive control. Nature Rev Neurosc 1(1): 59–65.
  34. Monchi O, Petrides M, Mejia-Constain B, Strafella AP (2007) Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement. Brain 130(1): 233–244.
  35. Nelson HE (1976) A modified card sorting test sensitive to frontal lobe defects. Cortex 12(4): 313–324.
  36. O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, McDonald WM, Avery D, Fitzgerald PB, Loo C, Demitrack MA, George MS, Sackeim HA (2007) Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 62: 1208–1216.
  37. Pallanti S, Di Rollo A, Antonini S, Cauli G, Hollander E, Quercioli L (2012) Low-frequency rTMS over right dorsolateral prefrontal cortex in the treatment of resistant depression: cognitive improvement is independent from clinical response, resting motor threshold is related to clinical response. Neuropsychobiology 65(4): 227–235.
  38. Pascual-Leone A, Hallett M (1994) Induction of errors in a delayed response task by repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Neuroreport 5(18): 2517–2520.
  39. Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117(4): 847–858.
  40. Postle BR, Zarahn E, D’Esposito M (2000) Using event-related fMRI to assess delay-period activity during performance of spatial and nonspatial working memory tasks. Brain Res Brain Res Protoc 5(1): 57–66.
  41. Robertson EM, Tormos JM, Maeda F, Pascual-Leone A (2001) The role of the dorsolateral prefrontal cortex during sequence learning is specific for spatial information. Cereb Cortex 11(7): 628–635.
  42. Romero JR, Anschel D, Sparing R, Gangitano M, Pascual-Leone A (2002) Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex. Clin Neurophysiol 113(1): 101–107.
  43. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMS Consensus Group (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12): 2008–2039.
  44. Rowe JB, Toni I, Josephs O, Frackowiak RS, Passingham RE (2000) The prefrontal cortex: response selection or maintenance within working memory? Science 288(5471): 1656–1660.
  45. Ruff CC, Driver J, Bestmann S (2009) Combining TMS and fMRI: from ‘virtual lesions’ to functional-network accounts of cognition. Cortex 45(9): 1043–1049.
  46. Rutiku R, Tulver K, Aru J, Bachmann T (2016). Visual masking with frontally applied pre-stimulus TMS and its subject-specific neural correlates.Brain Res 1642(2016): 136–145.
  47. Silvanto J, Pascual-Leone A (2008) State-dependency of transcranial magnetic stimulation. Brain Topogr 21(1): 1–10.
  48. Toro R, Fox PT, Paus T (2008) Functional coactivation map of the human brain. Cereb Cortex 18(11): 2553–2559.
  49. van der Werf YD, Sanz-Arigita EJ, Menning S, van den Heuvel OA (2010) Modulating spontaneous brain activity using repetitive transcranial magnetic stimulation. BMC Neurosci 11(1): 145.
  50. van ‘t Wout M, Kahn RS, Sanfey AG, Aleman A (2005) Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making. Neuroreport 16(16): 1849–1852.
  51. Verdejo-Garcia A, Vilar-LoPez R, Pérez-Garcķa M, Podell K, Goldberg E (2006) Altered adaptive but not veridical decision-making in substance dependent individuals. J Int Neuropsychol Soc 12(01): 90–99.
  52. Vogeley K, Podell K, Kukolja J (2003) Recruitment of the left prefrontal cortex in preference-based decisions in males (fMRI study). In:Annual Meeting of the Human Brain Mapping Organization. New York, NY, USA.
  53. Volle E, Kinkingnéhun S, Pochon JB, Mondon K, de Schotten MT, Seassau M, Levy R (2008) The functional architecture of the left posterior and lateral prefrontal cortex in humans. Cereb Cortex 18(10): 2460–2469.
  54. Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108(1): 1–16.
  55. Woźniak-Kwaśniewska A, Szekely D, Aussedat P, Bougerol T, David O (2013) Changes of oscillatory brain activity induced by repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in healthy
    subjects. Neuroimage 88: 91–99.
  56. Yu JA (2014) Decision-Making Tasks. In: Encyclopedia of Computational Neuroscience. Springer, New York, USA, p. 1–8.

EXTRA FILES

COMMENTS