Rat white matter injury model induced by endothelin-1 injection: technical modification and pathological evaluation

Publications

Share / Export Citation / Email / Print / Text size:

Acta Neurobiologiae Experimentalis

Nencki Institute of Experimental Biology

Polish Neuroscience Society

Subject: Behavioral Sciences , Biomedical Sciences & Nutrition , Life Sciences , Medicine , Neurosciences

GET ALERTS

ISSN: 0065-1400
eISSN: 1689-0035

DESCRIPTION

5
Reader(s)
15
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 76 , ISSUE 3 (September 2016) > List of articles

Advertisement Rat white matter injury model induced by endothelin-1 injection: technical modification and pathological evaluation

Hideaki Ono / Hideaki Imai * / Satoru Miyawaki / Hirofumi Nakatomi / Nobuhito Saito

Keywords : white matter injury, lacunar infarction, rat model, histopathology, retrograde tracing

Citation Information : Acta Neurobiologiae Experimentalis. Volume 76, Issue 3, Pages 212-224, DOI: https://doi.org/10.21307/ane-2017-021

License : (CC BY 4.0)

Published Online: 01-August-2017

ARTICLE

ABSTRACT

White matter injury is an important cause of functional disability of the brain. We comprehensively analyzed a modified endothelin-1 (ET-1) injection-induced white matter injury model in the rat which is very valuable for investigating the underlying mechanisms of subcortical ischemic stroke. ET-1 was stereotactically injected into the internal capsule of the rat. To avoid complications with leakage of ET-1 into the lateral ventricle, the safest trajectory angle to the target was established. Rats with white matter injury were extensively evaluated for structural changes and functional sequelae, using motor function tests, magnetic resonance (MR) imaging, histopathology evolution, volume estimation of the lesion, and neuroanatomical identification of affected neurons using the retrograde tracer hydroxystilbamidine. Optimization of the trajectory of the ET-1 injection needle provided excellent survival rate. MR imaging visualized the white matter injury 2 days after surgery. Motor function deficit appeared temporarily after the operation. Histological studies confirmed damage of axons and myelin sheaths followed by inflammatory reaction and gliosis similar to lacunar infarction, with lesion volume of less than 1% of the whole brain. Hydroxystilbamidine injected into the lesion revealed wide spatial distribution of the affected neuronal population. Compared with prior ET 1 injection models, this method induced standardized amount of white matter damage and temporary motor function deficit in a reproducible and safe manner. The present model is valuable for studying the pathophysiology of not only ischemia, but a broader set of white matter damage conditions in the lissencephalic brain.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. Ben-Shimol E, Gass N, Vollmayr B, Sartorius A, Goelman G (2015) Reduced connectivity and inter-hemispheric symmetry of the sensory system in a rat model of vulnerability to developing depression. Neuroscience 310: 742–750.
  2. Blasi F, Whalen MJ, Ayata C (2015) Lasting pure-motor deficits after focal posterior internal capsule white-matter infarcts in rats. J Cereb Blood Flow Metab 35: 977–984.
  3. Boltze J, Lukomska B, Jolkkonen J, MEMS–IRBI consortium (2014) Mesenchymal stromal cells in stroke: improvement of motor recovery or functional compensation?. J Cereb Blood Flow Metab 34: 1420–1421.
  4. Brown FW, Lewine RJ, Hudgins PA, Risch SC (1992) White matter hyperintensity signals in psychiatric and nonpsychiatric subjects. Am J Psychiatry 149: 620–625.
  5. Chen Y, Imai H, Ito A, Saito N (2013) Novel modified method for injection into the cerebrospinal fluid via the cerebellomedullary cistern in mice. Acta Neurobiol Exp (Wars) 73(2): 304–311.
  6. Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341: c3666.
  7. Frahm HD, Stephan H, Stephan M (1982) Comparison of brain structure volumes in Insectivora and Primates. I. Neocortex. J Hirnforsch 23: 375–389.
  8. Frost SB, Barbay S, Mumert ML, Stowe AM, Nudo RJ (2006) An animal model of capsular infarct: endothelin-1 injections in the rat. Behav Brain Res 169: 206–211.
  9. Fuxe K, Kurosawa N, Cintra A, Hallstrom A, Goiny M, Rosen L, Agnati LF, Ungerstedt U (1992) Involvement of local ischemia in endothelin-1 induced lesions of the neostriatum of the anaesthetized rat. Exp Brain Res 88: 131–139.
  10. Gadea A, Schinelli S, Gallo V (2008) Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J Neurosci 28: 2394–2408.
  11. Gilmour G, Iversen SD, O’Neill MF, Bannerman DM (2004) The effects of intracortical endothelin-1 injections on skilled forelimb use: implications for modelling recovery of function after stroke. Behav Brain Res 150: 171–183.
  12. Hattori Y, Enmi J, Kitamura A, Yamamoto Y, Saito S, Takahashi Y, Iguchi S, Tsuji M, Yamahara K, Nagatsuka K, Iida H, Ihara M (2015) A novel mouse model of subcortical infarcts with dementia. J Neurosci 35: 3915–3928.
  13. He Z, Yamawaki T, Yang S, Day AL, Simpkins JW, Naritomi H (1999) Experimental model of small deep infarcts involving the hypothalamus in rats: changes in body temperature and postural reflex. Stroke 30: 2743–2751; discussion: 2751.
  14. He Z, Yang SH, Naritomi H, Yamawaki T, Liu Q, King MA, Day AL, Simpkins JW (2000) Definition of the anterior choroidal artery territory in rats using intraluminal occluding technique. J Neurol Sci 182: 16–28.
  15. Imai H, Konno K, Nakamura M, Shimizu T, Kubota C, Seki K, Honda F, Tomizawa S, Tanaka Y, Hata H, Saito N (2006) A new model of focal cerebral ischemia in the miniature pig. J Neurosurg 104: 123–132.
  16. Janowski M, Gornicka-Pawlak E, Kozlowska H, Domanska-Janik K, Gielecki J, Lukomska B (2008) Structural and functional characteristic of a model for deep-seated lacunar infarct in rats. J Neurol Sci 273: 40–48.
  17. Jovicich J, Marizzoni M, Bosch B, Bartres-Faz D, Arnold J, Benninghoff J, Wiltfang J, Roccatagliata L, Picco A, Nobili F, Blin O, Bombois S, Lopes R, Bordet R, Chanoine V, Ranjeva JP, Didic M, Gros-Dagnac H, Payoux P, Zoccatelli G, Alessandrini F, Beltramello A, Bargallo N, Ferretti A, Caulo M, Aiello M, Ragucci M, Soricelli A, Salvadori N, Tarducci R, Floridi P, Tsolaki M, Constantinidis M, Drevelegas A, Rossini PM, Marra C, Otto J, Reiss-Zimmermann M, Hoffmann KT, Galluzzi S, Frisoni GB; PharmaCog Consortium (2014) Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects. Neuroimage 101: 390–403.
  18. Kaiser D, Weise G, Moller K, Scheibe J, Posel C, Baasch S, Gawlitza M, Lobsien D, Diederich K, Minnerup J, Kranz A, Boltze J, Wagner DC (2014) Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease. Acta Neuropathol Commun 2: 169.
  19. Kim HJ, Im K, Kwon H, Lee JM, Kim C, Kim YJ, Jung NY, Cho H, Ye BS, Noh Y, Kim GH, Ko ED, Kim JS, Choe YS, Lee KH, Kim ST, Lee JH, Ewers M, Weiner MW, Na DL, Seo SW (2015) Clinical effect of white matter network disruption related to amyloid and small vessel disease. Neurology 85: 63–70.
  20. Kissela B, Lindsell CJ, Kleindorfer D, Alwell K, Moomaw CJ, Woo D, Flaherty ML, Air E, Broderick J, Tsevat J (2009) Clinical prediction of functional outcome after ischemic stroke: the surprising importance of periventricular white matter disease and race. Stroke 40: 530–536.
  21. Lecrux C, McCabe C, Weir CJ, Gallagher L, Mullin J, Touzani O, Muir KW, Lees KR, Macrae IM (2008) Effects of magnesium treatment in a model of internal capsule lesion in spontaneously hypertensive rats. Stroke 39: 448–454.
  22. Li X, Liang Y, Chen Y, Zhang J, Wei D, Chen K, Shu N, Reiman EM, Zhang Z (2015) Disrupted frontoparietal network mediates white matter structure dysfunction associated with cognitive decline in hypertension patients. J Neurosci 35: 10015–10024.
  23. Liang H, Yin Y, Lin T, Guan D, Ma B, Li C, Wang Y, Zhang X (2013) Transplantation of bone marrow stromal cells enhances nerve regeneration of the corticospinal tract and improves recovery of neurological functions in a collagenase-induced rat model of intracerebral hemorrhage. Mol Cells 36: 17–24.
  24. Lou M, Yan SQ (2012) The clinical importance and heterogeneity of white matter hyperintensities (in Chinese). Zhonghua Yi Xue Za Zhi 92: 2165–2167. Maillard P, Carmichael OT, Reed B, Mungas D, DeCarli C (2015) Cooccurrence of vascular risk factors and late-life white-matter integrity changes. Neurobiol Aging 36: 1670–1677.
  25. Maillard P, Fletcher E, Lockhart SN, Roach AE, Reed B, Mungas D, DeCarli C, Carmichael OT (2014) White matter hyperintensities and their penumbra lie along a continuum of injury in the aging brain. Stroke 45: 1721–1726.
  26. Masuda T, Hida H, Kanda Y, Aihara N, Ohta K, Yamada K, Nishino H (2007)
  27. Oral administration of metal chelator ameliorates motor dysfunction after a small hemorrhage near the internal capsule in rat. J Neurosci Res 85: 213–222.
  28. Metz GA, Whishaw IQ (2002) Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 115:169–179.
  29. Molnár Z, Cordery P (1999) Connections between cells of the internal capsule, thalamus, and cerebral cortex in embryonic rat. J Comp Neurol 413: 1–25.
  30. Moon SK, Alaverdashvili M, Cross AR, Whishaw IQ (2009) Both compensation and recovery of skilled reaching following small photothrombotic stroke to motor cortex in the rat. Exp Neurol 218: 145–153.
  31. Mortamais M, Artero S, Ritchie K (2013) Cerebral white matter hyperintensities in the prediction of cognitive decline and incident dementia. Int Rev Psychiatry 25: 686–698.
  32. Oshima T, Lee S, Sato A, Oda S, Hirasawa H, Yamashita T (2009) TNF-alpha contributes to axonal sprouting and functional recovery following traumatic brain injury. Brain Res 1290: 102–110.
  33. Paxinos G, Watson C (2007) The Rat Brain in Stereotaxic Coordinates (6th ed.). Academic Press, San Diego, CA, USA.
  34. Petty MA, Wettstein JG (1999) White matter ischaemia. Brain Res Brain Res Rev 31: 58–64.
  35. Porsolt, RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266: 730–732.
  36. Puentes S, Kurachi M, Shibasaki K, Naruse M, Yoshimoto Y, Mikuni M, Imai H, Ishizaki Y (2012) Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage. Brain Res 1469: 43–53.
  37. Sasaki Y, Takimoto M, Oda K, Fruh T, Takai M, Okada T, Hori S (1997) Endothelin evokes efflux of glutamate in cultures of rat astrocytes. J Neurochem 68: 2194–2200.
  38. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39: 777–787
  39. Schmued LC, Fallon JH (1986) Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res 377: 147–154.
  40. Shichinohe H, Yamauchi T, Saito H, Houkin K, Kuroda S (2013) Bone marrow stromal cell transplantation enhances recovery of motor function after lacunar stroke in rats. Acta Neurobiol Exp (Wars) 73(3): 354–363.
  41. Sozmen EG, Kolekar A, Havton LA, Carmichael ST (2009) A white matter stroke model in the mouse: axonal damage, progenitor responses and MRI correlates. J Neurosci Methods 180: 261–272.
  42. Tan C, Shichinohe H, Abumiya T, Nakayama N, Kazumata K, Hokari M, Hamauchi S, Houkin K (2015) Short-, middle- and long-term safety of superparamagnetic iron oxide-labeled allogeneic bone marrow stromal cell transplantation in rat model of lacunar infarction. Neuropathology 35: 197–208.
  43. Tanaka Y, Akiyoshi J, Kawahara Y, Ishitobi Y, Hatano K, Hoaki N, Mori A, Goto S, Tsuru J, Matsushita H, Hanada H, Kodama K, Isogawa K, Kitamura H, Fujikura Y (2011) Infrared radiation has potential antidepressant and anxiolytic effects in animal model of depression and anxiety. Brain Stimul 4: 71–76.
  44. Tanaka Y, Imai H, Konno K, Miyagishima T, Kubota C, Puentes S, Aoki T, Hata H, Takata K, Yoshimoto Y, Saito N (2008) Experimental model of lacunar infarction in the gyrencephalic brain of the miniature pig: neurological assessment and histological, immunohistochemical, and physiological evaluation of dynamic corticospinal tract deformation. Stroke 39: 205–212.
  45. Ueda Y, Masuda T, Ishida A, Misumi S, Shimizu Y, Jung CG, Hida H (2014) Enhanced electrical responsiveness in the cerebral cortex with oral melatonin administration after a small hemorrhage near the internal capsule in rats. J Neurosci Res 92: 1499–1508.
  46. Ueno M, Hayano Y, Nakagawa H, Yamashita T (2012) Intraspinal rewiring of the corticospinal tract requires target-derived brain-derived neurotrophic factor and compensates lost function after brain injury. Brain 135: 1253–1267.
  47. Veldhuis WB, van der Stelt M, Delmas F, Gillet B, Veldink GA, Vliegenthart JF, Nicolay K, Bar PR (2003) In vivo excitotoxicity induced by ouabain, a Na+/ K+-ATPase inhibitor. J Cereb Blood Flow Metab 23: 62–74.
  48. Wagner DC, Scheibe J, Glocke I, Weise G, Deten A, Boltze J, Kranz A (2013) Object-based analysis of astroglial reaction and astrocyte subtype morphology after ischemic brain injury. Acta Neurobiol Exp (Wars) 73(1): 79–87.
  49. Wakita H, Tomimoto H, Akiguchi I, Kimura J (1994) Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: an immunohistochemical study. Acta Neuropathol 87: 484–492.
  50. Xu L, Ryu J, Hiel H, Menon A, Aggarwal A, Rha E, Mahairaki V, Cummings BJ, Koliatsos VE (2015) Transplantation of human oligodendrocyte progenitor cells in an animal model of diffuse traumatic axonal injury: survival and differentiation. Stem Cell Res Ther 6: 93.

EXTRA FILES

COMMENTS