The physiology of blood platelets and changes of their biological activities in multiple sclerosis

Publications

Share / Export Citation / Email / Print / Text size:

Acta Neurobiologiae Experimentalis

Nencki Institute of Experimental Biology

Subject: Behavioral Sciences, Biomedical Sciences & Nutrition, Life Sciences, Medicine, Neurosciences

GET ALERTS

ISSN: 0065-1400
eISSN: 1689-0035

DESCRIPTION

35
Reader(s)
78
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 76 , ISSUE 4 (December 2016) > List of articles

The physiology of blood platelets and changes of their biological activities in multiple sclerosis

Barbara Wachowicz / Agnieszka Morel / Elżbieta Miller / Joanna Saluk *

Keywords : platelets, multiple sclerosis, inflammation, oxidative stress, neurodegeneration

Citation Information : Acta Neurobiologiae Experimentalis. Volume 76, Issue 4, Pages 269-281, DOI: https://doi.org/10.21307/ane-2017-026

License : (CC BY 4.0)

Published Online: 31-July-2017

ARTICLE

ABSTRACT

Increasing evidence indicates that blood platelets contribute to diverse processes that extend beyond hemostasis. Many of the same mechanisms that play a role in hemostasis and thrombosis facilitate platelets the participation in other physiological and pathological processes, particularly in the inflammation, the immune response and central nervous system disorders. Platelets are involved in pathophysiology of central nervous system diseases, especially in the pathogenesis of multiple sclerosis, but their role appears to be neglected. Platelets contribute to the inflammation and cooperate with immune cells in inflammatory and immune responses. These blood cells were identified in inflamed spinal cord and in the brain in chronic active lesions of multiple sclerosis and in the related animal models referred as Experimental Autoimmune Encephalomyelitis. This review summarizes recent insights in the platelet activation accompanied by the exocytosis of bioactive compounds stored in granules, formation of platelet microparticles, expression of specific membrane receptors, synthesis of numerous biomediators, generation of free radicals, and introduces the mechanisms by which activated platelets may be involved in the pathophysiology of multiple sclerosis. Understanding the role of platelets in multiple sclerosis may be essential for improved therapies.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. Alizadehn A, Dyck SM, Karimi‑Abdolrezaee S (2015) Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci 8: 35.
  2. Ayache SS, Chalah MA (2016) Stem cells therapy in multiple sclerosis – a new hope for progressive forms. J Stem Cells Regen Med 1: 49–51.
  3. Badimon L, Suades R, Fuentes E, Palomo I, Padró T (2016) Role of platelet‑derived microvesicles as crosstalk mediators in atherothrombosis and future pharmacology targets: a link between inflammation, atherosclerosis, and thrombosis. Front Pharmacol 7: 293.
  4. Beckhauser TF, Francis‑Oliveira J, De Pasquale R (2016) Reactive oxygen species: physiological and physiopathological effects on synaptic plasticity. J Exp Neurosci 10(Suppl 1): 23–48.
  5. Bender M, Stegner D, Nieswandt B (2016) Model systems for platelet receptor shedding. Platelets. doi: 10.1080/09537104.2016.1195491.
    [CROSSREF]
  6. Bijak B, Saluk J, Ponczek BM, Nowak P, Wachowicz B (2013) Synteza białek w bezjądrzastych płytkach krwi (The synthesis of proteins in unnucleated blood platelets) (in Polish). Postepy Hig Med Dosw 67: 672–679.
  7. Boilard E, Duchez AC, Brisson A (2015) The diversity of platelet microparticles. Curr Opin Hematol 22(5): 437–444.
  8. Brantl SA, Khandoga AL, Siess W (2013) Mechanism of platelet activation induced by endocannabinoids in blood and plasma. Platelets 25(3): 151–161.
  9. Brkic M, Balusu S, Libert C, Vandenbroucke RE (2015) Friends or foes: matrix metalloproteinases and their multifaceted roles in neurodegenerative diseases. Mediators Inflamm 2015: 620581.
  10. Brola W, Sobolewski P, Flaga S, Fudala M, Szczuchniak W, Stoiński J, Rosołowska A, Wójcik J, Kapica‑Topczewska K, Ryglewicz D (2016)
  11. Prevalence and incidence of multiple sclerosis in central Poland, 2010–2014. BMC Neurol 16(1): 134.
  12. Bronstein JM, Paul K, Yang L, Haas RH, Shults CW, Le T, Ritz B (2015) Platelet mitochondrial activity and pesticide exposure in early Parkinson’s disease. Mov Disord 30(6): 862–866.
  13. Calabrese V, Scapagnini G, Spacagnini G (2002) Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in cerebrospinal fluid protei nitrotyrosine and S‑nitrosothols and with changes in glutathione levels. J Neurosci Res 70: 580–587.
  14. Casarin AL, Lopes‑Pires ME, Morganti RP, Antunes E, Marcondes S (2011) Reactive oxygen and nitrogen species modulate the ex‑vivo effects of LPS on platelet adhesion to fibrinogen. Life Sci 89(21–22): 773–778.
  15. Chatterjee M, Geisler T (2016) Inflammatory contribution of platelets revisited: new players in the arena of inflammation. Semin Thromb Hemost 42(3): 205–214.
  16. Chen S, Su J, Wang J (2013) ROS‑mediated platelet generation: a microenvironment‑dependent manner for megakaryocyte proliferation, differentiation, and maturation. Cell Death Dis 4: e722.
  17. Dasgupta A, Zheng J, Perrone‑Bizzozero NI, Bizzozero OA (2013) Increased carbonylation, protein aggregation and apoptosis in the spinal cord of mice with experimental autoimmune encephalomyelitis. ASN Neuro 5(1): e00111.
  18. Davidson DC, Hirschman MP, Sun A, Singh MV, Kasischke K, Maggirwar SB (2012) Excess soluble CD40L contributes to blood brain barrier permeability in vivo: implications for HIV‑associated neurocognitive disorders. PLoS One 7(12): e51793.
  19. Desai RA, Davies AL, Tachrount M, Kasti M, Laulund F, Golay X, Smith KJ (2016) Cause and prevention of demyelination in a model multiple sclerosis lesion. Ann Neurol 79(4): 591–604.
  20. DeSantiago J, Bare DJ, Banach K (2013) Ischemia/reperfusion injury protection by mesenchymal stem cell derived antioxidant capacity. Stem Cells Dev 22(18): 2497–2507.
  21. D’Souza CA, Zhao FL, Li X, Xu Y, Dunn SE, Zhang Li (2016) OGR1/GPR68 modulates the severity of experimental autoimmune encephalomyelitis and regulates nitric oxide production by macrophages. PLoS One 11(2): e0148439.
  22. Edwards LJ, Constantinescu CS (2009) Platelet activating factor/platelet activating factor receptor pathway as a potential therapeutic target in autoimmune diseases. Inflamm Allergy Drug Targets 8(3): 182–190.
  23. Farrokhi M, Beni AA, Etemadifar M, Rezaei A, Rivard L, Zadeh AR, Sedaghat N, Ghadimi M (2015) Effect of fingolimod on platelet count among multiple sclerosis patients. Int J Prev Med 6: 125. doi: 10.4103/2008‑7802.172539.
  24. Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7): 829–837.
  25. Fuentes E, Rojas A, Palomo I (2016) NF‑κB signaling pathway as target for antiplatelet activity. Blood Rev 30(4): 309–315.
  26. Gasperini C, Ruggieri S (2012) Development of oral agent in the treatment of multiple sclerosis: how the first available oral therapy, fingolimod will change therapeutic paradigm approach. Drug Des Devel Ther 6: 175–186.
  27. Goodin DS (2016) The epidemiology of multiple sclerosis: insights to a causal cascade. Handb Clin Neurol 138: 173–206.
  28. Habets KL, Huizinga TW, Toes RE (2013) Platelets and autoimmunity. Eur J Clin Invest 43(7): 746–757.
  29. Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B, Robinson WH, Baranzini SE, Grinnell BW, Raine CS, Sobel RA, Han DK, Steinman L (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451(7182): 1076–1081.
  30. Hind WH, Tufarelli C, Neophytou M, Anderson SI, England TJ, O’Sullivan SE (2015) Endocannabinoids modulate human blood‑brain barrier permeability in vitro. Br J Pharmacol 172(12): 3015–3027.
  31. Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Steven AJ, Minagar A (2010) Role of platelets in neuroinflammation: a wide‑angle perspective. J Neuroinflammation 7: 10.
  32. Jones AP, Kermode AG, Lucas RM, Carroll WM, Nolan D, Hart PH (2016) Circulating immune cells in multiple sclerosis. Clin Exp Immunol. doi: 10.1111/cei.12878.
  33. Jones CI (2016) Platelet function and ageing. Mamm Genome 27: 358–366.
  34. Kawachi I, Lassmann H (2016) Neurodegeneration in multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry 2016: 313300.
  35. Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24: 325–340.
  36. Koenen RR (2016) The prowess of platelets in immunity and inflammation. Thromb Haemost 116: 605–612.
  37. Koseoglu S, Flaumenhaft R (2013) Advances in platelet granule biology. Curr Opin Hematol 20: 464–471.
  38. Kraemer BF, Weyrich AS, Lindemann S (2013) Protein degradation systems in platelets. Thromb Haemost 110: 920–924.
  39. Kral JB, Schrottmaier WC, Salzmann M, Assinger A (2016) Platelet interaction with innate immune cells. Transfus Med Hemother 43: 78–88.
  40. Krishnamurthy VR, Sardar MY, Ying Y, Song X, Haller C, Dai E, Wang X, Hanjaya‑Putra D, Sun L, Morikis V, Simon SI, Woods RJ, Cummings RD, Chaikof EL (2015) Glycopeptide analogues of PSGL‑1 inhibit P‑selectin in vitro and in vivo. Nat Commun 6: 6387.
  41. Lam FW, Vijayan KV, Rumbaut RE (2015) Platelets and their interactions with other immune cells. Compr Physiol 5: 1265–1280.
  42. Langer HF, Choi EY, Zhou H, Schleicher R, Chung KJ, Tang Z, Göbel K, Bdeir K, Chatzigeorgiou A, Wong C, Bhatia S, Kruhlak MJ, Rose JW, Burns JB, Hill KE, Qu H, Zhang Y, Lehrmann E, Becker KG, Wang Y, Simon DI, Nieswandt B, Lambris JD, Li X, Meuth SG, Kubes P, Chavakis T (2012) Platelets contribute to the pathogenesis of experimental autoimmune encephalomyelitis. Circ Res 110: 1202–1210.
  43. Lawrence L Horstman, Wenche Jy, Yeon S Ahn, Robert Zivadinov, Amir H Maghzi, Masoud Etemadifar, J Steven Alexander, Alireza Minagar (2010) Role of platelets in neuroinflammation: a wide‑angle perspective. J Neuroinflammation 7: 10.
  44. Lehmann PV, Rottlaender A, Kuerten S (2015) The autoimmune pathogenesis of multiple sclerosis. Pharmazie 70: 5–11.
  45. Li Z, Yang F, Dunn S, Gross AK, Smyth SS (2011) Platelets as immune mediators: their role in host defense responses and sepsis. Thromb Res 3: 184–188.
  46. Lindberg RL, De Groot CJ, Certa U, Ravid R, Hoffmann F, Kappos L, Leppert D (2004) Multiple sclerosis as a generalized CNS disease – comparative microarray analysis of normal appearing white matter and lesions in secondary progressive MS. J Neuroimmunol 152(1–2): 154–167.
  47. Marcos‑Ramiro B, Oliva Nacarino P, Serrano‑Pertierra E, Blanco‑Gelaz MA, Weksler BB, Romero IA, Couraud PO, Tuñón A, López‑Larrea C, Millán J, Cernuda‑Morollón E (2014) Microparticles in multiple sclerosis and clinically isolated syndrome: effect on endothelial barrier function. BMC Neurosci 15: 110.
  48. Mastenbroek TG, Feijge MA, Kremers RM, van den Bosch MT, Swieringa F, De Groef L, Moons L, Bennett C, Ghevaert C, Johnson JL, van der Meijden PE, Cosemans JM (2015) Platelet‑associated matrix metalloproteinases regulate thrombus formation and exert local collagenolytic activity. Arterioscler Thromb Vasc Biol 35: 2554–2561.
  49. McGraw CA, Lublin FD (2013) Interferon Beta and Glatiramer Acetate therapy. Neurotherapeutics 10: 2–18.
  50. Miljković D, Spasojević I (2013) Multiple sclerosis: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 19(18): 2286–2334.
  51. Miller E (2012) Multiple sclerosis. Adv Exp Med Biol 724: 222–238.
  52. Morel A, Bijak M, Miller E, Rywaniak J, Miller S, Saluk J (2015) Relationship between the increased haemostatic properties of blood platelets and oxidative stress level in multiple sclerosis patients with the secondary progressive stage. Oxid Med Cell Longev 2015: 240918.
  53. Morel A, Miller E, Bijak M, Saluk J (2016) The increased level of COX‑dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients. Mol Cell Biochem 420(1–2): 85–94.
  54. Moro K, Nagahashi M, Ramanathan R, Takabe K, Wakai T (2016) Resolvins and omega three polyunsaturated fatty acids: clinical implications in inflammatory diseases and cancer. World J Clin Cases 4(7): 155–164.
  55. Morrell CN, Aggrey AA, Chapman LM, Modjeski KL (2014) Emerging roles for platelets as immune and inflammatory cells. Blood 123: 2759–2767.
  56. Müller KA, Chatterjee M, Rath D, Geisler T (2015) Platelets, inflammation and anti‑inflammatory effects of antiplatelet drugs in ACS and CAD. Thromb Haemost 114: 498–518.
  57. Mutlu A, Gyulkhandanyan AV, Freedman J, Leytin V (2012) Activation of caspases‑9, ‑3 and ‑8 in human platelets triggered by BH3‑only mimetic ABT‑737 and calcium ionophore A23187: caspase‑8 is activated via bypass of the death receptors. Br J Haematol 159: 565–571.
  58. Nakamura T, Lipton SA (2011) Redox modulation by S‑nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative disease. Cell Death Differ 18: 1478–1486.
  59. Nathanson M, Savitsky JP (1952) Platelet adhesiveness index studies in multiple sclerosis and other neurologic disorders. Bull N Y Acad Med 7: 462–468.
  60. Palmer AM (2013) Multiple sclerosis and the blood‑central nervous system barrier. Cardiovasc Psychiatry Neurol 2013: 530356.
  61. Papapanagiotou A, Daskalakis G, Siasos G, Gargalionis A, Papavassiliou AG (2016) The role of platelets in cardiovascular disease: molecular mechanisms.
  62. Curr Pharm Des. epub ahead of print. Ponomareva AA, Nevzorova TA, Mordakhanova ER, Andrianova IA, Litvinov RI (2016) Structural characterization of platelets and platelet‑derived microvesicles. Tsitologiia 58: 105–114.
  63. Putnam TJ (1937) The cerebral circulation: Some new points in its anatomy, physiology and pathology. J Neurol Psychopathol 17(67): 193–212.
  64. Radick L, Mehr SR (2015) The latelest innovations in the drug pipeline for multiple sclerosis. Am Health Drug Benefits 8: 448–453.
  65. Rainger GE, Chimen M, Harrison MJ, Yates CM, Harrison P, Watson SP, Lordkipanidzé M, Nash GB (2015) The role of platelets in the recruitment of leukocytes during vascular disease. Platelets 26: 507–520.
  66. Raphael I, Webb J, Stuve O, Haskins WE, Forsthuber TG (2015) Body fluid biomarkers in multiple sclerosis: how far we have come and how they could affect the clinic now and in the future. Expert Rev Clin Immunol 11: 69–91.
  67. Sáenz‑Cuesta M, Irizar H, Castillo‑Triviño T, Muñoz‑Culla M, Osorio‑Querejeta I, Prada A, Sepúlveda L, López‑Mato MP, López de Munain A, Comabella M, Villar LM, Olascoaga J, Otaegui D (2014) Circulating microparticles reflect treatment effects and clinical status in multiple sclerosis. Biomark Med 8: 653–661.
  68. Saluk‑Juszczak J, Królewska K (2010) The role of CD40/CD40L pathway in biological activity of blood platelets: part I (in Polish). Przegl Menopauz 5: 305–308.
  69. Schrottmaier WC, Kral JB, Zeitlinger M, Salzmann M, Jilma B, Assinger A (2016) Platelet activation at the onset of human endotoxemia is undetectable in vivo. Platelets 27: 479–483.
  70. Seizer P, May AE (2013) Platelets and matrix metalloproteinases. Thromb Haemost 110: 903–909.
  71. Sheremata WA, Jy W, Horstman LL, Ahn YS, Alexander JS, Minagar A (2008) Evidence of platelet activation in multiple sclerosis. J Neuroinlammation 5: 27.
  72. Sotnikov I, Veremeyko T, Starossom SC, Barteneva N, Weiner HL, Ponomarev ED (2013) Platelets recognize brain‑specific glycolipid structures, respond to neurovascular damage and promote neuroinflammation. PLoS One 8: e58979.
  73. Spanevello RM, Mazzanti CM, Bagatini M, Correa M, Schmatz R, Stefanello N, Thomé G, Morsch VM, Becker L, Bellé L, de Oliveira L, Schetinger MR (2010) Activities of the enzymes that hydrolyze adeninę nucleotides in platelets from multiple sclerosis patients. J Neurol 257: 24–30.
  74. Starossom SC, Veremeyko T, Yung AW, Dukhinova M, Au C, Lau AY, Weiner HL, Ponomarev ED (2015) Platelets play differential role during the initiation and progression of autoimmune neuroinflammation. Circ Res 117: 779–792.
  75. Steinman L (2012) Platelets provide a bounty of potential targets for therapy in multiple sclerosis. Circ Res 110: 1157–1158.
  76. Thomas MR, Storey RF (2015) The role of platelets in inflammation. Thromb Haemost 114: 449–458.
  77. Thornton P, McColl BW, Greenhalgh A, Denes A, Allan SM, Rothwell NJ (2010) Platelet interleukin 1‑alfa drives cerebrovascular inflammation. Blood 115: 3632–639.
  78. Tyml K (2011) Critical role for oxidative stress, platelets, and coagulation in capillary blood flow impairment in sepsis. Microcirculation 18: 152–162.
  79. van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, van der Valk P, de Vries HE (2008) Oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic Biol Med 45: 1729–1737.
  80. Varon D, Shai E (2015) Platelets and their microparticles as key players in pathophysiological responses. J Thromb Haemost 1: S40–S46.
  81. Vogel DYS, Vereyken EJF, Glim JE, Heijnen PDAM, Moeton M, van der Valk, Amor S, Teunissen CE, van Horssen J, Dijkstra CD (2013) Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation 10: 35.
  82. Wevers NR, de Vries HE (2016) Morphogens and blood‑brain barrier function in health and disease. Tissue Barriers 4: e1090524.
  83. Witherick J, Wilkins A, Scolding N, Kemp K (2011) Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment. Autoimmune Dis 2011: 164608.
  84. Wright HP, Thompson RHS, Zilkha KJ (1965) Platelet adhesiveness in multiple sclerosis. Lancet 65: 1109–1110.
  85. Wu Q, Ren J, Hu D, Wu X, Li G, Wang G, Gu G, Chen J, Li R, Li Y, Hong Z, Ren H, Zhao Y, Li J (2016) Monocyte subsets and monocyte‑platelet aggregates: implications in predicting septic mortality among surgical critical illness patients. Biomarkers 21: 509–516.
  86. Xu XR, Gallant RC, Ni H (2016a) Platelets, immune‑mediated thrombocytopenias, and fetal hemorrhage. Thromb Res 141(Suppl 2): S76–S79.
  87. Xu XR, Zhang D, Oswald BE, Carrim N, Wang X, Hou Y, Zhang Q, Lavalle C, McKeown T, Marshall AH, Ni H (2016b) Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci 53(6): 409–430.
  88. Zhang G, Han J, Welch EJ, Ye RD, Voyno‑Yasenetskaya TA, Malik AB, Du X, Li Z (2009) Lipopolysaccharide stimulates platelet secretion and potentiates
    platelet aggregation via TLR4/MyD88 and the cGMP‑dependent protein kinase pathway. J Immunol 182(12): 7997–8004.
  89. Zhu X, Song Z, Zhang S, Nanda A, Li G (2014) CD147: a novel modulator of inflammatory and immune disorders. Curr Med Chem 21(19): 2138–2145.

EXTRA FILES

COMMENTS