CRESOLS AND THE MICROORGANISMS OF THE SOIL ENVIRONMENT

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

11
Reader(s)
77
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 56 , ISSUE 1 (April 2017) > List of articles

CRESOLS AND THE MICROORGANISMS OF THE SOIL ENVIRONMENT

Magdalena Zaborowska *

Keywords : biodegradacja, gleba, katabolizm,  krezole, mikroorganizmy, biodegradation, soil, catabolism, cresols, microorganisms

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 56, Issue 1, Pages 7-17, DOI: https://doi.org/10.21307/PM-2017.56.1.007

License : (CC BY-NC-ND 4.0)

ARTICLE

ABSTRACT

Phenolic compounds, including cresols, in the soil environment are a result of natural processes such as: biodegradation of lignins and tannins, and anthropogenic activity. Cresols are present in disinfectants as well as in the wastewater from chemical, petrochemical, pharmaceutical, paper and textile industry. They are also used in the production of insecticides, herbicides, medicines and antioxidants and have been classified as hazardous substances. Exposure of microorganisms to cresols can bring about changes in the structure of their cell membranes, resulting in their growth inhibition and cell lysis. However, there is still an untapped bioremediation potential in microorganisms, which are able to participate in the catabolism of cresols, both under aerobic and anaerobic conditions. The typical strategies of the aerobic degradation of cresols include the use of monooxygenase and dioxygenase enzymes. Thanks to these enzymes, atoms of molecular oxygen initiate fission of the aromatic ring structure. Under anaerobic conditions, the mechanisms of cresol decomposition currently focus on the addition of fumarate, hydroxylation or carboxylation. The effectiveness of microorganisms in the degradation of cresols is not only due to their occurrence in consortia. They are also effective as single strains. The only controversial aspect involves using genetically modified organisms (GMOs) or their genes in the bioaugmentation process. This is because they are strictly selected and target only specific substrates. Due to this, they do not compete with autochthonous microorganisms undergoing natural selection.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Alexieva Z., Ivanova D., Godjevargova T., Atanasov B.: Degradation of some phenol derivatives by Trichosporon cutaneum R57. Process Biochem. 37, 1215–1219 (2002)
2. Alexieva Z., Yemendzhiev H., Zlateva P.: Cresols utilization by Trametes versicolor and substrate interactions in the mixture with phenol. Biodegradation, 21, 625–635 (2010)
3. Arora P.K., Bae H.: Bacterial degradation of chlorophenols and their derivatives. Microb. Cell. Fact. 13, 1–17 (2014)
4. Arutchelvan V., Kanakasabai V. Nagarajan S., Muralikrishnan V.: Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater. J. Hazard. Mater. B. 127, 238–243 (2005)
5. Atagana H.I.: Biodegradation of phenol, o-cresol, m-cresol and p-cresol by indigenous soil fungi in soil contaminated with creosote. World J. Microbiol. Biotechnol. 20, 851–858 (2004)
6. ATSDR 2013 substance priority list. Atlanta, GA, U.S.A: Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov/spl/ (23.03.2016)
7. Bak F., Widdel F.: Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov. Arch. Microbiol. 146, 177–180 (1986)
8. Bertoni G., Bolognesi F., Galli E., Barbieri P.: Cloning of the genes for and characterization of the early stages of toluene catabolism in Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 62, 3704–3711 (1996)
9. Biegert T., Altenschmidt U., Eckerskorn C., Fuchs G.: Enzymes of anaerobic metabolism of phenolic compounds. 4-hydroxybenzoate-CoA ligase from denitrifying Pseudomonas species. Eur. J. Biochem. 213, 555–561 (1993)
10. Boll M.: Key enzymes in the anaerobic aromatic metabolism catalysing Birch-like reductions. Biochim. Biophys. Acta, 1707, 34–50 (2005)
11. Bonting C.F.C., Schneider S., Schmidtberg G., Fuchs G.: Anaerobic degradation of m-cresol via methyl oxidation to 3-hydroxybenzoate by a denitrifying bacterium. Arch. Microbiol. 164, 63–69 (1995)
12. Boopathy R.: Factors limiting bioremediation technologies Review paper. Bioresource Technol. 74, 63–67 (2000)
13. Bossert I.D., Rivera M.D., Young L.Y.: p-Cresol biodegradation under denitrifying conditions: Isolation of a bacterial coculture. FEMS Microbiol. Ecol. 38, 313–319 (1986)
14. Bravo L.: Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56, 317–333 (1998)
15. Bronick C.J., Lal R.: Soil structure and management: a review. Geoderma, 124, 3–22 (2005)
16. Cafaro V., Notomista E., Capasso P., Donato D.: Phenol Hydroxylase and Toluene/o-Xylene Monooxygenase from Pseudomonas stutzeri OX1: Interplay between Two Enzymes. Appl. Environ. Microbiol. 70, 2211–2219 (2004)
17. Caspi R.T., Altman K., Dreher C.A., Fulcher P., Subhraveti I.M., Keseler A., Kothari M., Krummenacker M., Latendresse L.A., Mueller Q., Ong S., Paley A., Pujar A.G., Shearer M., Travers D., Weerasinghe P., Karp Z.P.D.: The Meta Cyc Database of metabolic pathways and enzymes and the Bio Cyc collection of pathway/genome databases. Nucleic Acids Res. 40, 742–753 (2012)
18. Chi X.Q., Zhang J.J., Zhao S., Zhou N.Y.: Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers. Environ. Pollut. 172, 33–41 (2013)
19. Colbert Ch.L., Couture M.M.J., Eltis L.D.T., Bolin J.A.: Cluster Exposed: Structure of the Rieske Ferredoxin from Biphenyl Dioxygenase and the Redox Properties of Rieske Fe-S Proteins. Structure, 8, 1267–1278 (2000)
20. Dercová K., Certík M., Malová A., Sejáková Z.: Effect of chlorophenols on the membrane lipids of bacterial cells. Int. Biodeter. Biodegr. 54, 251–254 (2004)
21. Devassy B.M., Shanbhag G.V., Lefebvre F., Halligudi S.B.: Alkylation of p-cresol with tert-butanol catalyzed by heteropoly acid supported on zirconia catalyst. J. Molec. Catal. A: Chem. 210, 125–130 (2004)
22. Dziennik Ustaw, nr 1, poz. 1800: Rozporządzenie Ministra Środowiska z dnia 18 listopada 2014 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego (2014)
23. Dziennik Ustaw, nr 165, poz. 1395: Rozporządzenie Ministra Środowiska z dnia 9 września 2002 r. w sprawie standardów jakości gleby oraz standardów jakości ziemi (2002)
24. Dziennik Ustaw, nr 212, poz. 1769: Rozporządzenie Ministra Gospodarki i Pracy z dnia 10 października 2005 r. zmieniające rozporządzenie w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy (2005)
25. El Fantroussi S., Agathos S.N.: Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr. Opin. Microbiol. 8, 268–275 (2005)
26. European Commission Employment, Social Affairs and Inclusion.: Recommendation from the Scientific Committee for Occupational Exposure Limits for 4,6-dinitro-o-cresol SCOEL/SUM/60, 1–14 (2004)
27. Flox C., Cabot P.L., Centellas F., Garrido J.A., Rodriguez R.M., Arias C., Brillas E.: Solar photo electro-Fenton degradation of cresols using a flow reactor with a boron-doped diamond anode. Appl. Catin. B: Environm. 75, 17–28 (2007)
28. Goswami M., Shivaraman N., Singh R.P.: Microbial metabolism of 2-chlorophenol, phenol and rho-cresol by Rhodococcus erythropolis M1 in co-culture with Pseudomonas fluorescens P1. Microbiol. Res. 160, 101–109 (2005)
29. Gregory G.L.: Method of ortho-alkylating phenol. General Electric Co., US Patent 4933509 (1989)
30. Guzik U., Greń I., Wojcieszyńska D., Łabużek S.: Dioksygenazy – główne enzymy degradacji związków aromatycznych. Biotechnologia, 3, 71–88 (2008)
31. Harwood C. S., Burchhardt G., Herrmann H., Fuchs G.: Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol. Rev. 22, 439–458 (1999)
32. Hayashi M., Nakamur A.Y., Higashi K., Kato H., Kishida F., Kaneko H.: A quantitative structure – activity relationship study of the skin irritation potential of phenols. Toxicol. in vitro, 13, 915–922 (1999)
33. Heider J., Fuchs G.: Microbial Anaerobic Aromatic Metabolism. Anaerobe, 3, 1–22. (1997)
34. Heinaru E., Merimaa M., Viggor S., Lehiste M., Leito I., Truu J., Heinaru A.: Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol – and oil-polluted area. FEMS Microbiol. Ecol. 51, 363–373 (2005)
35. Heipieper H.J., Weber F.J., Sikkema J., Keweloh H., Bont J.A.M.: Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12, 409–415 (1994)
36. Hollender J., Hopp J., Dott W.: Cooxidation of chloro – and methylphenols by Alcaligenes xylosoxidans JH1. World J. Microbiol. Biotechnol. 16, 445–450 (2000)
37. Hopper D.J., Taylor D.G.: Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida. J. Bacteriol. 122, 1–6 (1975)
38. Huertas M.J., Duque E., Marques S., Ramos J.L.: Survival in soil of different toluene – degrading Pseudomonas strains after solvent shock. Appl. Environ. Microbiol. 64, 38–42 (1998)
39. Hui L., Yub Qi. J., Wanga G., Yea F., Conga Y.: Biodegradation of phenol at high concentration by a novel yeast Trichosporon montevideense PHE1. Process Biochem. 46, 1678–1681 (2011)
40. Huijbregts R.P.H., Kroon A.I.P.M., Kruij B.: Topology and transport of membrane lipids in bacteria. Biochim. Biophys. Acta, 1469, 43–61 (2000)
41. Jacques R.J.S., Santos E.C., Bento F.M., Peralba M.C.R., Selbach P.A, Sa E.L.S., Camargo F.A.O.: Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. Int. Biodeter. Biodegr. 56, 143–150 (2005)
42. Jain R.K., Bayly R.C., Skurray R.A.: Specific deletion of a large segment of pra 500: a 3,5-xylenol degradative plasmid, Lett. Appl. Microbiol. 12, 216–220 (1991)
43. Jiang Y., Wen J., Li H., Yang S., Hu Z.: The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Biochem. Eng. J. 24, 243–247 (2005)
44. Johannes J., Bluschke A., Jehmlich N., Bergen M., Boll M.: Purification and characterization of active-site components of the putative p-cresol Methylhydroxylase Membrane Complex from Geobacter metallireducens. J. Bacteriol. 190, 6493–6500 (2008)
45. Kaisoon O., Siriamornpun S., Weerapreeyakul N., Meeso N.: Phenolic compounds and anti-oxidant activities of edible flowers from Thailand. J. Funct. Foods. 3, 88–99 (2011)
46. Kennes C., Lema J.M.: Simultaneous biodegradation of p-cresol and phenol by the basidiomycetes Phanerochaete chrysosporium. J. Ind. Microbiol. 13, 311–314 (1994)
47. Keweloh H., Diefenbach R., Rehm H. J.: Increase of phenol tolerance of Escherichia coli by alterations of the fatty acid composition of the membrane lipids. Arch. Microbiol. 157, 49–53 (1991)
48. Khleifat M.K.: Biodegradation of phenol by Ewingella americana: Effect of carbon starvation and some growth conditions. Process Biochem. 41, 2010–2016 (2006)
49. Kim J., Fuller J.H., Cecchini G., McIntire W.S.: Cloning, sequencing, and expression of the structural genes for thecytochrome and flavoprotein subunits of p-cresol methylhydroxylase from two strains of Pseudomonas putida. J. Bacteriol. 176, 6349–6361 (1994)
50. Kirk P.W.: Isolation and culture of lignicolous marine fungi. Mycologia, 61, 174–177 (1969)
51. Kita A., Kita S., Inaka K., Ishida T., Horiike K., Nozaki M.: Crystallization and preliminary X-ray diffraction studies of expressed Pseudomonas putida catechol 2,3-dioxygenase. J. Biochem. 122, 201–204 (1997)
52. Krastanov A., Alexieva Z., Yemendzhiev H.: Microbial degradation of phenol and phenolic derivatives. Eng. Life Sci. 13, 76–87 (2013)
53. Landau M.V., Kaliya M.L., Herskowitz M.: Ammoxidation of p-cresol to p-hydroxybenzonitrile high-performance boria-phosphoria supported catalysts. Appl. Catal. A: Gen. 208, 21–34 (2001)
54. Leahy J.G., Batchelor P.J., Morcomb S.Z.: Evolution of the soluble di iron monooxygenases. FEMS Microbiol. Rev. 27, 449–479 (2003)
55. Leahy J.G., Colwell R.R.: Microbial Degradation of Hydrocarbons in the Environment. Microbiol. Rev. 54, 305–315 (1990)
56. Liebeg E.W., Cutright T.J.: The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. Int. Biodeter. Biodegr. 44, 55–64 (1999)
57. Londry K.L., Fedorak P.M.: Use of fluorinated compounds to detect aromatic metabolites from m-cresol in a methanogenic consortium: evidence for a demethylation reaction. Appl. Env. Microbiol. 59, 2229–2238 (1993)
58. Lovley D.R., Giovannoni S.J., White D.C., Champine J.E., Phillips E.J.P., Gorby Y.A. Goodwin S.: Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159, 336–344 (1993)
59. Mäkelä M.R., Marinović M., Nousiainen P., Liwanag A.J.M., Benoit I., Sipilä J., Hatakka A., Vries R.P., Hildén K.S.: Aromatic Metabolism of Filamentous Fungi in Relation to the Presence of Aromatic Compounds in Plant Biomass. Adv. Appl. Microbiol. 91, 1–75 (2015)
60. Marrot B., Barrios-Martinez A., Moulin P., Roche N.: Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor. Biochem. Eng. J. 30, 174–183 (2006)
61. Michałowicz J., Duda W.: Phenols-Sources and Toxicity. Polish J. Environ. Stud. 16, 347–362 (2007)
62. Moridani M.Y., Siraki A., Chevaldina T., Scobie H., Obrie N.P.J.: Quantitative structure toxicity relationship for catechols in isolated rat hepatocytes. Chem. Biol. Interact. 147, 297–307 (2004)
63. Mrozik A.: Zmiany w składzie bakteryjnych kwasów tłuszczowych w czasie rozkładu fenolu w glebie. Wyd. UŚ Katowice, 1–106 (2009)
64. Müller J.A., Galushko A.S., Kappler A., Schink B.: Initiation of Anaerobic Degradation of p-Cresol by Formation of 4-Hydroxybenzylsuccinate in Desulfobacterium cetonicum J. Bacteriol. 183, 752–757 (2001)
65. Murray J.C., Burch J.A., Streilein R.D., Iannacchione M.A., Hall R.P., Pinnell S.R.: A topical antioxidant solution containing vitamins C and E stabilized by ferulic acid provides protection for human skin against damage caused by ultraviolet irradiation. J. Am. Acad. Dermatol. 59, 418–425 (2008)
66. Murray L. J., Lippard S. J.: Substrate trafficking and dioxygen activation in bacteria multicomponent monooxygenases. Accounts Chem. Res. 40, 466–474 (2007)
67. Nešvera J., Rucká L., Pátek M.: Chapter Four-Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants. Adv. Appl. Microbiol. 4, 107–160 (2015)
68. OECD SIDS.: m-, p-cresol (Screening Information Data Set-SIDs) http://www.inchem.org/documents/sids/sids/m-p-cresols.pdf. (2006) (23. 03. 2016)
69. OECD SIDS.: o-cresol (Screening Information Data Set-SIDs) http://www.inchem.org/documents/sids/sids/95487.pdf . (2005) (23.03.2016)
70. Otto K., Hofstetter K., Röthlisberger W. B., Schmid A.: Biochemical Characterization of StyAB from Pseudomonas sp. strain VLB120 as a Two-Component Flavin-Diffusible Monooxygenase. J. Bacteriol. 186, 5292–5302 (2004)
71. Pérez-Pantoja D., Iglesia D.R., Pieper D.H., Gonzalez B.: Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol. Rev. 32, 736–794 (2008)
72. Porter A.W., Young L.Y.: Chapter Five-Benzoyl-CoA, a Universal Biomarker for Anaerobic Degradation of Aromatic Compounds. Adv. Appl. Microbiol. 88, 167–203 (2014)
73. Powlowski J., Shingler V.: Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation, 5, 219–236 (1994)
74. Pradhan N., Ingle A.O.: Mineralization of phenol by a Serratia plymuthica strain GC isolated from sludge sample. Int. Biodeter. Biodegr. 60, 103–108 (2007)
75. Rabus R., Nordhaus R., Widdel L.W.F.: Complete oxidation of toluene under strictly anaerobic conditions by a new sulfate-reducing bacterium. Appl. Env. Microbiol. 59, 1444–1451 (1993)
76. Rasmussen G., Olsen R.A.: Sorption and biological removal of creosote-contaminants from groundwater in soil/sand vegetated with orchard grass (Dactylis glomerata). Adv. Environ. Res. 8, 313–327 (2004)
77. Ren Y., Lihua P., Zhao G., Wei Ch.: Degradation of m-cresol via the orto cleavage pathway by Citrobacter farmeri SC01. Biochem. Eng. J. 88, 108–114 (2014)
78. Riegert U., Burger S., Stolz A.: Altering catalytic properties of 3-chlorocatechol-oxidizing extradiol dioxygenase from Sphingomonas xenophaga BN6 by random mutagenesis. J. Bacteriol. 183, 2322–2330 (2001)
79. Romantschuk M., Sarand I.T., Petänen R., Peltola M., Jonsson-Vihanne T., Koivula K., Yrjälä K., Haahtela K.: Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches. Environ. Pollut. 107, 179–185 (2000)
80. Rudolphi A., Tschech A., Fuchs G.: Anaerobic degradation of cresols by denitrifying bacteria. Arch. Microbiol. 155, 238–248 (1991)
81. Saa L., Jaureguibeitia A., Largo E., Llama M.J., Serra, J.L.: Cloning, purification and characterization of two components of phenol hydroxylase from Rhodococcus erythropolis UPV-1. Appl. Microbiol. Biotechnol. 86, 201–211 (2010)
82. Sad M.E., Padro C.L. Apesteguı C.R.: Selective synthesis of p-cresol by methylation of phenol. Appl. Catal. A-Gen. 342, 40–48 (2008a)
83. Sad M.E., Padro C.L., Apesteguı C.R.: Synthesis of cresols by alkylation of phenol with methanol on solid acids. Catal. Today. 133–135, 720–728 (2008b)
84. Saravanan P., Pakshirajan K., Saha P.: Biodegradation of phenol and m-cresol ina batch and fed batch operated internal loop airlift bioreactor by indigenous mixed microbial culture predominantly Pseudomonas sp. Bioresour. Technol. 99, 8553–8558 (2008)
85. Sarish S., Devassy B.M., Halligudi S.B.: tert-Butylation of p-cresol over WOx/ZrO2 solid acid catalysts. J. Molec. Catal. A: Chem. 235, 44–51 (2005)
86. Schmeling S., Narmandakh A., Schmitt O., Gadon N., Schühle K., Fuchs G.: Phenylphosphate Synthase: a New Phosphotransferase Catalyzing the First Step in Anaerobic Phenol Metabolism in Thauera aromatica. J. Bacteriol. 186, 8044–8057 (2004)
87. Schmidt S., Kirby G.W.: Dioxygenative cleavage of C-methylated hydroquinones and 2,6-dichlorohydroquinone by Pseudomonas sp. HH35. Biochim. Biophys. Acta, 1568, 83–89 (2001)
88. Shibata A., Yasushi I., Arata K.: Aerobic and anaerobic biodegradation of phenol derivatives in various paddy soils. Sci. Total Environ. 367, 979–987 (2006)
89. Shingler V., Bartilson M., Moore T.: Cloning and Nucleotide Sequence of the Gene Encoding the Positive Regulator (DmpR) of the Phenol Catabolic Pathway Encoded by pVI150 and Identification of DmpR as a Member of the NtrC Family of Transcriptional Activators. J. Bacteriol. 175, 596–1604 (1993)
90. Shinoda Y., Akagi J., Uchihashi Y., Hiraishi A., Yukawa H., Yurimoto H.: Anaerobic degradation of aromatic compounds by Magnetospirillum strains: isolation and degradation genes. Biosci. Biotechnol. Biochem. 69, 1483–1491 (2005)
91. Sikkema J., Weber F.J., Heipieper H.J., Bont J.A.M.: Cellular Toxicity of Lipophilic Compounds: Mechanisms, Implications, and Adaptations. Biocatalysis, 10, 113–122 (1994)
92. Silva C.D., Gomez J., Beristain-Cardoso R.: Simultaneous removal of 2-chlorophenol, phenol, p-cresol and p-hydroxybenzaldehyde under nitrifying conditions: kinetic study. Bioresource Technol. 102, 6464–6468 (2011)
93. Sparling G.P., Ord B.G., Vaughan D.: Changes in microbial biomass and activity in soils amended with phenolic acids. Soil Biol. Biochem. 13, 455–460 (1981)
94. Starek A.: Krezol – mieszanina izomerów. Dokumentacja dopuszczalnych wielkości narażenia zawodowego. Podstawy i Metody Oceny Środowiska Pracy, 1, 95–111 (2007)
95. Toxicological profile for cresols: o-cresol, m-cresol.: U.S. Department of Health and Human Services. TP-91/11 (1992)
96. Tschech A., Fuchs G.: Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonadales. Arch. Microbiol. 148, 213–217 (1987)
97. Ullrich R., Hofrichter M.: Enzymatic hydroxylation of aromatic compounds. Cell. Mol. Life Sci. 64, 271–293 (2007)
98. Valli K., Gold M. H.: Degradation of 2, 4-dicholorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J. Bacteriol. 173, 345–352 (1991)
99. Van der Meer J.R., Ravatn R., Sentchilo V.: The clc element of Pseudomonas sp. strain B13 and other mobile degradative elements employing phage-like integrases. Arch. Microbiol. 175, 79–85 (2001)
100. Van der Meer J.R., Vos W.M., Harayama S., Zehnder A.J.B.: Molecular Mechanisms of Genetic Adaptation to Xenobiotic Compounds. Microbial. Rev. 56, 677–694 (1992)
101. Veeresh G.S., Kumar P., Mehrotra I.: Treatment of phenol and cresols in up flow an aerobic sludge blanket (UASB) process: a review. Water Res. 39, 154–170 (2005)
102. Wei X., Gilevska T., Wetzig F., Dorer C., Richnow H.H., Vogt C.: Characterization of phenol and cresol biodegradation by compound specific stable isotope analysis. Environ. Pollut. 210, 166–173 (2016)
103. Wöhlbrand L., Jacob J.H., Kube M., Mussmann M., Jarling R., Beck A.: Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium. Environ. Microbiol. 15, 1334–1355 (2013)
104. Wöhlbrand L., Wilkes H., Halder T., Rabus R.: Anaerobic degradation of p-ethylphenol by Aromatoleum aromaticum strain EbN1: Pathway, regulation, and involved proteins. J. Bacteriol. 190, 5699–5709 (2008)
105. Wright A., Olsen R. H.: Self-mobilization and organization of the genes encoding the toluene metabolic pathway of Pseudomonas mendocina KR1. Appl. Environ. Microb. 60, 235–242 (1994)
106. Yap L. F., Lee Y.K., Poh C.L.: Mechanism for phenol tolerance in phenol-degrading Comamonas testosteroni strain. Appl. Microbiol. Biotechnol. 51, 833–840 (1999)
107. Zaborina O., Seitz H.J., Sidorov I., Eberspächer J., Alexeeva E., Golovleva L., Lingens F.: Inhibition analysis of hydroxyquinol-cleaving dioxygenases from the chlorophenols degrading Azotobacter sp. GP1 and Streptomyces rochei 303. J. Basic Microbiol. 39, 61–73 (1999)
108. Zhang T., Tremblay P.L., Chaurasia A.K., Smith J.A., Bain T.S., Lovley D.R.: Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl. Environ. Microbiol. 79, 7800–7806 (2013)

EXTRA FILES

COMMENTS