FRUCTOPHILIC LACTIC ACID BACTERIA (FLAB) – A NEW GROUP OF HETEROFERMENTATIVE MICROORGANISMS FROM THE PLANT ENVIRONMENT

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

41
Reader(s)
95
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 56 , ISSUE 1 (April 2017) > List of articles

FRUCTOPHILIC LACTIC ACID BACTERIA (FLAB) – A NEW GROUP OF HETEROFERMENTATIVE MICROORGANISMS FROM THE PLANT ENVIRONMENT

Klaudia Gustaw * / Magdalena Michalak / Magdalena Polak-Berecka / Adam Waśko

Keywords : FLAB, Fructobacillus, fruktofilne bakterie kwasu mlekowego,   FLAB, Fructobacillus, fructophilic lactic acid bacteria

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 56, Issue 1, Pages 56-66, DOI: https://doi.org/10.21307/PM-2017.56.1.056

License : (CC BY-NC-ND 4.0)

ARTICLE

ABSTRACT

Recently, a unique kind of lactic acid bacteria (LAB) i.e. fructophilic lactic acid bacteria (FLAB), has been described. This specific group prefers D-fructose over D-glucose as a carbon source to growth. They can be found in fructose rich environments such as flowers, fruits and food products made of fermented fruits, for example tempoyak. In recent years, it has been revealed that insects which feed on food high in fructose are an abundant source of fructophilic bacteria. Bacterial communities inhabiting intestinal tracts of honeybees, bumblebees, Camponotus ants and tropical fruit flies were examined. At present FLAB includes six species: Fructobacillus fructosus, Fructobacillus durionis, Fructobacillus ficulneus, Fructobacillus pseudoficulneus, Fructobacillus tropaeoli and Lactobacillus kunkeei classified by Endo as obligatorily fructophilic, and only one species, namely Lactobacillus florum, as facultatively fructophilic. Latest publications describe new species of potential fructophilic characteristics, which suggests that there is still much to discover in that group.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Akinterinwa O., Khankal R., Cirino P.C.: Metabolic engineering for bioproduction of sugar alcohols. Curr. Op. Biotechnol. 19, 461–467 (2008)
2. Antunes A., Rainey F.A., Nobre M.F., Schumann P., Ferreira A.M., Ramos A., Santos H., da Costa M.S.: Leuconostoc ficulneum sp. nov., a novel lactic acid bacterium isolated from a ripe fig, and reclassification of Lactobacillus fructosus as Leuconostoc fructosum comb. nov. Int. J. Syst. Evol. Micr. 52, 647–655 (2002)
3. Axelsson L.: Lactic acid bacteria: classification and physiology (w) Lactic Acid Bacteria. red. S. Salminen, A. von Wright, A. Ouwehand, Marcel Dekker Inc., New York, 1993, s. 1–63
4. Azcarate-Peril M.A., Klaenhammer T.R.: Genomics of lactic acid bacteria: The post-genomics challenge – from sequence to function (w) Biotechnology of lactic acid bacteria: Novel Applications. red. F. Mozzi, R.R. Raya, G.M. Vignolo, Wiley-Blackwell, Hoboken, 2010, s. 32–54
5. Chambel L., Chelo I.M., Ze’-Ze’ L., Pedro L.G., Santos M.A., Tenreiro R.: Leuconostoc pseudoficulneum sp. nov., isolated from a ripe fig. Int. J. Syst. Evol. Micr. 56, 1375–1381 (2006)
6. Chelo I.M., Zé-Zé L., Tenreiro R.: Congruence of evolutionary relationships inside the Leuconostoc-Oenococcus-Weissell clade assessed by phylogenetic analysis of the 16S rRNA gene, dnaA, gyrB, rpoC and dnaK. Int. J. Syst. Evol. Micr. 57, 276−286 (2007)
7. Davis C.R., Wibowo D., Eschenbruch R., Lee T.H., Fleet G.H.: Practical implications of malolactic fermentation: a review. Am. J. Enol. Viticult. 36, 290–301 (1985)
8. De Bruyne K., Schillinger U., Caroline L., Boehringer B., Cleenwerck I., Vancanneyt M., De Vuyst L., Franz C.M.A.P., Vandamme P.: Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int. J. Syst. Evol. Micr. 57, 2952−2959 (2007)
9. Edwards C.G., Haag K.M., Collins M.D., Hutson R.A., Huang Y.C.: Lactobacillus kunkeei sp. nov.: a spoilage organism associated with grape juice fermentations. J. Appl. Microbiol. 84, 698–702 (1998)
10. Endo A., Futagawa-Endo Y., Dicks L.M.T.: Isolation and characterization of fructophilic lactic acid bacteria from fructoserich niches. Syst. Appl. Microbiol. 32, 593–600 (2009)
11. Endo A., Irisawa T., Futagawa-Endo Y., Takano K., du Toit M., Okada S., Dicks L.M.: Characterization and emended description of Lactobacillus kunkeei as a fructophilic lactic acid bacterium. Int. J. Syst. Evol. Micr. 62, 500–504 (2012)
12. Endo A., Okada S.: Reclassification of the genus Leuconostoc, and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. nov. Int. J. Syst. Evol. Micr. 58, 2195–2205 (2008)
13. Endo A., Dicks L.M.T.: The genus Fructobacillus. Lactic acid bacteria biodiversity and taxonomy (w) Lactic acid bacteria: biodiversity and taxonomy. red. H.W. Holzapfel, B.J.B. Wood, Wiley-Blackwell, Hoboken, 2014, s. 381–385
14. Endo A.: Fructophilic lactic acid bacteria inhabit fructose-rich niches in nature. Microb. Ecol. Health D., DOI: 10.3402/mehd.v23i0.18563 . (2012)
15. Endo A., Salminen S.: Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst. Appl. Microbiol. 36, 444–448 (2013)
16. Endo A., FutagawaEndo Y., Dicks L.M.T.: Influence of carbohydrates on the isolation of lactic acid bacteria. J. Appl. Microbiol. 110, 1085–1092 (2011)
17. Endo A., Futagawa-Endo Y., Sakamoto M., Kitahara M., Dicks L.M.: Lactobacillus florum sp. nov., a fructophilic species isolated from flowers. Int. J. Syst. Evol. Micr. 60, 2478–2482 (2010)
18. Endo A., Irisawa T., Futagawa-Endo,Y., Sonomoto K., Itoh K., Takano K., Okada S., Dicks L.M.T.: Fructobacillus tropaeoli sp. nov., a novel fructophilic lactic acid bacterium isolated from a flower. Int. J. Syst. Evol. Micr. 61, 898–902 (2011)
19. Endo A., Tanaka N., Oikawa Y., Okada S., Dicks L.: Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE). Curr. Microbiol. 68, 531–535 (2014)
20. Fuhrman J.A.: Microbial community structure and its functional implications.
Nature, 459, 193–199 (2009)
21. Gajewska J., Blaszczyk M.K.: Probiotyczne bakterie fermentacji mlekowej (LAB). Post. Mikrobiol. 51, 55–65 (2012)
22. Gruter C., Moore H., Firmin N., Helantera H., Ratnieks F.L.: Flower constancy in honey bee workers (Apis mellifera) depends on ecologically realistic rewards. J. Exp. Biol. 214, 1397–1402 (2011)
23. Hammes W.P., Hertel C.: The genera Lactobacillus and Carnobacterium. (w) The Prokaryotes. red. M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer, E. Stackebrandt, Springer, New York, 2006, s. 320–403
24. He H., Chen Y., Zhang Y., Wei C.: Bacteria associated with gut lumen of Camponotus japonicus Mayr. Environ. Entomol. 40, 1405–1409, (2011)
25. Herrera C.M., Garcia I.M., Perez R.: Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology, 89, 2369–2376 (2008)
26. Herrera C.M., Pozo M.I.: Nectar yeasts warm the flowers of a winter-blooming plant. P. Roy. Soc. Lond. B. Bio. 277, 1827–1834 (2010)
27. Klaenhammer T.R., Altermann E., Pfeiler E., Buck B.L., Goh Y.J., O’Flaherty S., Barrangou R., Duong T.: Functional genomics of probiotic Lactobacilli. J. Clin. Gastroenterol. 42, 160–162 (2008)
28. Kodama R.: Lactobacillus fructosus nov. sp., a new species of lactic acid bacteria. Studies on the nutrition of lactic acid bacteria. J. Agric. Chem. Soc. Jpn. 30,705–708 (1956)
29. Koo O.K., Jeong D.W., Lee J.M, Kim M.J., Lee J-H., Chang H.C., Kim J.H., Lee H.J.: Cloning and characterization of the bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Leuconostoc mesenteroides isolated from kimchi. Biotechnol. Lett. 27, 505–510 (2005)
30. Lefeber T., Gobert W., Vrancken G., Camu N., De Vuyst L.: Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels. Food Microbiol. 28, 457–464 (2011)
31. Leisner J.J., Vancanneyt M. i wsp.: Leuconostoc durionis sp. nov., a heterofermenter with no detectable gas production from glucose. Int. J. Syst. Evol. Micr. 55, 1267–1270 (2005)
33. Makarova K., Slesarev A., i wsp.: Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA, 42, 15611–15616 (2006)
33. Makarova K.S., Koonin E.V.: Evolutionary genomics of lactic acid bacteria. J. Bacteriol. 189, 1199–1208 (2007)
34. Marri P.R., Hao W., Golding G.B.: Gene gain and gene loss in streptococcus: is it driven by habitat? Mol. Biol. Evol. 23, 2379–2391 (2006)
35. Moran N.A., Hansen A.K., Powell J.E., Sabree Z.L.: Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One, 7, e36393 (2012)
36. Mtshali P.S., Divol B., Du Toit M.: Identification and characterization of Lactobacillus florum strains isolated from South African grape and wine samples. Int. J. Food Microbiol. 153, 106–113 (2012)

37. Nielsen D.S., Teniola O.D., Ban-Koffi L., Owusu M., Andersson T.S., Holzapfel W.H.: The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and cultureindependent methods. Int. J. Food Microbiol. 114, 168–186, (2007)

38. Nuraida L., Grigolava I., Owens J.D., Campbell-Platt G.: Oxygen and pyruvate as external electron acceptors for Leuconostoc spp. J. Appl. Bacteriol. 72, 517–522, (1992)
39. Papalexandratou Z., Falony G., Romanens E., Jimenez J.C., Amores F., Daniel H.M., De Vuyst L.: Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional ecuadorian spontaneous cocoa bean fermentations. Appl. Environ. Microbiol. 77, 7698–7714 (2011)
40. Rachman C.N., Kabadjova H., Prévost H., Dousset X.: Identification of Lactobacillus alimentarius and Lactobacillus farciminis with 16S-23S rDNA intergenic spacer region polymorphism and PCR amplification using species-specific oligonucleotide. J. Appl. Microbiol. 95, 1207–1216 (2003)
41. Thaochan N., Drew R.A., Hughes J.M., Vijaysegaran S., Chinajariyawong A.: Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. J. Insect Sci. 10, 1–16 (2010)
42. Vannette R.L., Gauthier M.P.L., Fukami T. Nectar bacteria, but not yeast, weaken a plant-pollinator mutualism. P. Roy. Soc. Lond. B. Bio. 280, DOI: 10.1098/rspb.2012.2601 (2012)
43. Whitman W.B., Coleman D.C., Wiebe W.J. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA, 95, 6578–6583 (1998)
44. Zavaleta A.I., Martinez-Murcia A.J., Rodriguez-Valera F.: 16S-23S rDNA intergenic sequences indicate that Leuconostoc oenos is phylogenetically homogeneous.
Microbiology, 142, 2102–2114 (1996)

EXTRA FILES

COMMENTS