Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 0079-4252
eISSN: 2545-3149





Volume / Issue / page

Related articles

VOLUME 56 , ISSUE 1 (April 2017) > List of articles


Sebastian Niestępski / Monika Harnisz * / Ewa Korzeniewska / Adriana Osińska / Bartłomiej Dziuba

Keywords : antybiotykooporność, Bacteroides, chorobotwórczość,   antibiotic resistance, Bacteroides, pathogenicity

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 56, Issue 1, Pages 67-76, DOI:

License : (CC BY-NC-ND 4.0)

Published Online: 21-May-2019



Anaerobic Bacteroides species are dominant microbiota of the digestive tract of mammals. Along with other symbiotic bacteria located in the gastrointestinal tract, they contribute to the proper functioning of the organism. Some Bacteroides species are highly pathogenic. Virulence of these bacteria is related to their polysaccharide capsule, lipopolysaccharide and a variety of enzymes and enterotoxin. In recent years, an increase of antibiotic resistance in Bacteroides spp. has been noted, therefore the changes to the antibiotic resistance patterns in these bacteria should be monitored. This study summarizes the current knowledge about the bacteria of Bacteroides species.

Content not available PDF Share



1. Ayala J., Quesada A., Vadillo S., Criado J. Píriz S.: Penicillin-binding proteins of Bacteroides fragilis and their role in the resistance to imipenem of clinical isolates. J. Med. Microbiol. 54, 1055–1064 (2005)
2. Baron E.J., Allen S.D.: Should clinical laboratories adopt new taxonomic changes? If so, when? Clin. Infect. Dis. 16, 449–450 (1993)
3. Bartha N.A., Soki J., Edit U., Nagy E.: Investigation of the prevalence of tetQ, tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations. Int. J. Antimicrob. Agents, 38, 522–525 (2011)
4. Boyanova L., Kolarov R., Mitov I.: Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe, 31, 4–10 (2015)
5. Britz M.L., Wilkinson R.G.: Chloramphenicol acetyl-transferase of Bacteroides fragilis. Antimicrob. Agents Chemother. 14, 105–111 (1978)
6. Brook I., Wexler H.M., Goldstein E.J.: Antianaerobic antimicrobials: spectrum and susceptibility testing. Clin. Microbiol. Rev. 26, 526–546 (2013)
7. Bryan L.E., Kowand S.K., Van Den Elzen H.M.: Mechanism of aminoglycoside antibiotic resistance in anaerobic bacteria: Clostridium perfringens and Bacteroides fragilis. Antimicrob. Agents Chemother. 15, 7–13 (1979)
8. Chaudhry R., Mathur P., Dhawan B., Kumar L.: Emergence of metronidazole-resistant Bacteroides fragilis, India. Emerg. Infect. Dis. 7, 485–486 (2001)
9. Cisneros J. M., Rodriguez-Bano J., Fernandez-Cuenca F., Ribera A., Vila J., Pascual A., Martinez-Martinez L., Bou G., Pachon J.: Risk-factors for the acquisition of imipenem-resistant Acinetobacter Baumannie in Spain: a nationwide study. Clin. Microbiol. Infect. 11, 874–879 (2005)
10. Wayne P.A.: Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard. CLSI publication number M11-A7. Clinical and Laboratory Standards Institute, 2007
11. Edwards R.: Resistance to beta-lactam antibiotics in Bacteroides spp. J. Med. Microbiol. 46, 979–986 (1997)
12. Eisen J.A.: Environmental shotgun sequencing: its potential and challenges for studying the hidden world of microbes. PLoS Bio. 5, 82 (2007)
13. Eitel Z., Soki J., Urban E., Nagy E.: The prevalence of antibiotic resistance genes in Bacteroides fragilis group strains isolated in different European countries. Anaerobe, 21, 43–49 (2013)
14. Engberg J., Neimann J., Nielsen E.M., Aerestrup F.M., Fussing V.: Quinolone-resistant Campylobacter infections: risk factors and clinical consequences. Emerg. Infect. Dis. 10, 1056–1063 (2004)
15. EUCAST Website, (21 czerwca 2016 roku)
16. Falagas M.E., Siakavellas E.: Bacteroides, Prevotella, and Porphyromonas species: a review of antibiotic resistance and therapeutic options. Int. J. Antimicrob. Agents, 15, 1–9 (2000)
17. Fang H., Edlund C., Nord C.E., Hedberg M.: Selection of cefoxitin-resistant Bacteroides thetaiotaomicron mutants and mechanisms involved in beta-lactam resistance. Clin. Infect. Dis. 35, 47–53 (2002)
18. Gal M., Brazier J.S.: Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole resistant mutants. J. Antimicrob. Chemother. 54, 109–116 (2004)
19. Georgopapadakou N.H., Smith S.A., Sykes R.B.: Penicillin binding proteins in Bacteroides fragilis. J. Antibiot. 36, 907–910 (1983)
20. Gillespie W.A., Guy J.: Bacteroides in intra-abdominal sepsis. Lancet, 270, 1039–1041 (1956)
21. Goh B.K., Alkouder G., Lama T.K., Tan C.E.: Multi-drug resistant Acinetobacter baumannii intra-abdominal abscess. Surg. Infect. 6, 345–347 (2005)
22. Gootz T.D. The forgotten Gram-negative bacilli: what genetic determinants are telling us about the spread of antibiotic resistance. Biochem. Pharmacol. 71, 1073–1084 (2006)
23. Haggoud A., Reysset G., Azeddoug H., Sebald M.: Nucleotide sequence analysis of two 5-nitroimidazole resistance determinants from Bacteroides strains and of a new insertion sequence upstream of the two genes. Antimicrob. Agents Chemother. 38, 1047–1051 (1994)
24. Hartmeyer G.N., Sóki J., Nagy E., Justesen U.S.: Multidrug-resistant Bacteroides fragilis group on the rise in Europe? J. Med. Microbiol. 61, 1784–1788 (2012)
25. Hecht D.W.: Anaerobes: antibiotic resistance, clinical significance, and the role of susceptibility testing. Anaerobe, 12, 115–121 (2006)
26. Hu Y., Meng, Z. i wsp.: Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nature Com. 4 (2013)
27. Jain R., Danziger L.H.: Multidrug-resistant Acinetobacter infections: an emerging challenge to clinicians. Ann. Pharmacother. 38, 1449–1459 (2004)
28. Kato N., Yamazoe K., Han C-G., Ohtsubo E.: New insertion sequence elements inthe upstream region of cfiA in imipenem-resistant Bacteroides fragilis strains. Antimicrob. Agents. Chemother. 47, 979–985 (2003)
29. Kierzkowska M., Majewska A., Sawicka-Grzelak A., Młynarczyk G.: Pałeczki Gram-ujemne beztlenowo rosnące – diagnostyka i znaczenie kliniczne. Post. Mikrobiol. 55, 91–98 (2016)
30. Kim J.M., Lee J.Y., Yoon Y.M., Oh Y.K., Kang J.S., Kim Y.J., Kim K.H.: Bacteroides fragilis enterotoxin induces cyclooxygenase-2 and fluid secretion in intestinal epithelial cells through NF-kappa B activation. Eur. J. Immunol. 36, 2446–2456 (2006)
31. Kislak J.W.: The susceptibility of Bacteroides fragilis to 24 antibiotics. J. Infect. Dis. 125, 295–298 (1972)
32. Krieg NR, Ludwig W, Euze´by JP, Whitman WB. Phylum XIV. Bacteroidetes phyl. nov. (w) Bergey’s Manual of Systematic Bacteriology, red. W. Whitman, Springer, New York, 2011, s. 25–41
33. Lacombe-Antoneli A., Píriz S., Vadillo S.: In vitro antimicrobial susceptibility of anaerobic bacteria isolated from caprine footrot. Acta Vet. Hung. 55, 11–20 (2007)
34. Leng Z., Riley D.E., Berger R.E., Krieger J.N., Roberts M.C.: Distribution and mobility of the tetracycline resistance determinant tet Q. J. Antimicrob. Chemother. 40, 551–559 (1997)
35. Livermore D.M., Woodford N.: Carbapenemases: a problem in waiting? Curr. Opin. Microbiol. 3, 489–495 (2000)
36. Lofmark S., Fang H., Hedberg M., Edlund C.: Inducible metronidazole resistance and nim genes in clinical Bacteroides fragilis group isolates. Antimicrob. Agents Chemother. 49, 1253–1256 (2005)
37. Lorenzo M., Garcia N., Alfonso Ayala J., Vadillo S., Píriz S., Quesada A.: Antimicrobial resistance determinants among anaerobic bacteria isolated from footrot, Vet. Microbiology, 157, 112–118 (2012)
38. Miyamae S., Nikaido H., Tanaka Y., Yoshimura F.: Active Efflu of norfloxacin by Bacteroides fragilis. Antimicrob. Agents Chemother. 42, 2119–2121 (1998)
39. Miyamae S., Ueda O., Yoshimura F., Hwang J., Tanaka Y., Nikaido H.: A MATE family multidrug efflux transporter pumps out fluoroquinolones in Bacteroides thetaiotaomicron. Antimicrob. Agents Chemother. 45, 3341–3346 (2001)
40. Nagy E., Justesen U.S., Eitel Z., Urbán E.: Development of EUCAST disk diffusion method for susceptibility testing of the Bacteroides fragilis group isolates. Anaerobe, 31, 65–71 (2015)
41. Nagy E., Urban E., Nord C.E.: Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin. Microbiol. Infec. 17, 371–379 (2011)
42. Nikonorow E., Baraniak A., Gniadkowski M.: Oporność bakterii z rodziny Enterobacteriaceae na antybiotyki β-laktamowe wynikająca z wytwarzania β-laktamaz. Post. Mikrobiol. 52, 261–271 (2013)
43. Ogawa W., Li D.W., Yu P., Begum A., Mizushima T., Kuroda T., Tsuchiya T.: Multidrug resistance in Klebsiella pneumoniae MGH78578 and cloning of genes responsible for the resistance. Biol. Pharm. Bull. 28, 1505–1508 (2005)
44. Oh H., El Amin N., Davies T., Appelbaum P.C., Edlund C.: gyrA mutations associated with quinolone resistance in Bacteroi-
des fragilis group strains. Antimicrob. Agents Chemother. 45, 1977–1981 (2001)
45. Papaparaskevas J., Katsandri A., Pantazatou A., Stefanou I., Avlamis A., Legakis N., Tsakris A.: Epidemiological characteristics of infections caused by Bacteroides, Prevotella and Fusobacterium species: A prospective observational study. Anaerobe, 17, 113–117 (2011)
46. Parija S.C.: Textbook of microbiology and immunology. Elsevier Health Sciences, New Delhi, 2014
47. Piddock L.J.V. Multidrug-resistance efflux pumps – not just for resistance, Nature Rev. Microbiol. 4, 629–636 (2006)
48. Piddock L.J.V., Wise R.: Cefoxitin resistance in Bacteroides species: evidence indicating two mechanisms causing decreased susceptibility. J. Antimicrob. Chemother. 19, 161–170 (1987)
49. Píriz S., Vadillo S., Quesada A., Criado J., Cerrato R., Ayala J.: Relationship between penicillin-binding protein patterns and beta-lactamases in clinical isolates of Bacteroides fragilis with different susceptibility to beta-lactam antibiotics. J. Med. Microbiol. 53, 213–221 (2004)
50. Pumbwe L., Wareham D.W., Aduse-Opoku J., Brazier J.S., Wexler H.M.: Genetic analysis of mechanisms of multidrug resistance in a clinical isolate of Bacteroides fragilis. Clin. Microbiol. Infect. 13, 183–189 (2007)
51. Ricci V., Peterson M.L., Rotschafer J.C., Wexler H., Piddock L.J.: Role of topoisomerase mutations and efflux in fluoroquinolone resistance of Bacteroides fragilis clinical isolates and laboratory mutants. Antimicrob. Agents Chemother. 48, 1344–1346 (2004)
52. Roberts M.C.: Update on acquired tetracycline resistant genes. FEMS Microbiol. Lett. 245, 195–203 (2005)
53. Rogers M.B., Parker A.C., Smith C.J.: Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A beta-lactamases. Antimicrob. Agents Chemother. 37, 2391–2400 (1993)
54. Sachs J.: Are antibiotics killing us? Discover, 26, 36 (2005)
55. Sakamoto M., Benno Y.: Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int. J. Syst. Evol. Microbiol. 56, 1599–1605 (2006)
56. Sakamoto M., Tanaka Y., Benno Y., Ohkuma M.: Parabacteroides faecis sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 65, 1342–1346 (2015)
57. Salyers A.A., Amabile-Cuevas C.F.: Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother. 41, 2321–2325 (1997)
58. Sears C.L. The toxins of Bacteroides fragilis. Toxicon, 39, 1737–1746 (2001)
59. Shoemaker N.B., Vlamakis H., Hayes K., Salyers A.A.: Evidence for extensive resistance gene transfer among Bacteroides spp. And among Bacteroides and other genera in the human colon. Appl. Environ. Microbiol. 67, 561–568 (2001)
60. Snydman D.R., Gorbach S.L., I wsp.: In vitro activities of newer quinolones against Bacteroides group organisms. Antimicrob. Agents Chemother. 46, 3276–3279 (2002)
61. Snydman D.R., Gorbach S.L., I wsp.: National survey on the susceptibility of Bacteroides fragilis group: report and analysis of trends in the United States from 1997 to 2004. Antimicrob. Agents Chemother. 51, 1649–1655 (2007)
62. Snydman D.R., Hecht D.W. i wsp.: Update on resistance of Bacteroides fragilis group and related species with special attention to carbapenems 2006–2009. Anaerobe, 17, 147–151 (2011)
63. Sóki J., Hedberg M., Patrick S., Bálint B., Herczeg R., Nagy I., Hecht D.W., Nagy E., Urbán E.: Emergence and evolution of an international cluster of MDR Bacteroides fragilis isolates. J. Antimicrob. Chemother. 71, 2441–2448 (2016)
64. Sóki J.: Extended role for insertion sequence elements in the antibiotic resistance of Bacteroides. World J. Clin. Infect. Dis. 3, 1–12 (2013)
65. Sutter V.L., Citron D.M., Edelstein M.A.C., Finegold S.M.: Wadsworth anaerobic bacteriology manual, 4th ed. Star Publishing Co., Belmont, 1985
66. Székely E., Eitel Z., Molnár S., Szász I.É., Bilca D., Sóki J.: Analysis of Romanian Bacteroides isolates for antibiotic resistance levels and the corresponding antibiotic resistance genes. Anaerobe, 31, 11–14 (2015)
67. Toprak N.U., Yagci A., Gulluoglu B.M., Akin M.L., Demirkalem P., Celenk T., Soyletir G.: A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect. 12, 782–786 (2006)
68. Vedantam G., Hecht D.W.: Antibiotics and anaerobes of gut origin. Curr. Opin. Microbiol. 6, 457–461 (2003)
69. Wareham D.W., Wilks M., Ahmed D., Brazier J.S., Millar M.: Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: microbiological cure and clinical response with linezolid therapy. Clin. Infect. Dis. 40, 67–68 (2005)
70. Weintraub A., Larsson B.E., Lindberg A.A.: Chemical and immunochemical analyses of Bacteroides fragilis lipopolysaccharides. Infect. Immun. 49, 197–201 (1985)
71. Wexler H.M.: Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007)
72. Whittle G., Hund B.D., Shoemaker N.B., Salyers A.A.: Characterisation of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT. Appl. Environ. Microbiol. 67, 3488–3495 (2001)
73. Wu S., Lim K.C., Huang J., Saidi R.F., Sears C.L.: Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl. Acad. Sci. USA, 95, 14979–14984 (1998)
74. Yang W., Moore I.F., Koteva K.P., Bareich D.C., Hughes D.W., Wright G.D.: TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J. Biol. Chem. 279, 52346–52352 (2004)