AMYLOIDS, COMMON PROTEINS AMONG MICROORGANISMS

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

34
Reader(s)
148
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 56 , ISSUE 1 (April 2017) > List of articles

AMYLOIDS, COMMON PROTEINS AMONG MICROORGANISMS

Barbara Katarzyna Pawłowska * / Beata Magdalena Sobieszczańska

Keywords : amyloidy funkcjonalne, biofilm, fimbrie spiralne,   functional amyloids, biofilm, curli fibers

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 56, Issue 1, Pages 77-87, DOI: https://doi.org/10.21307/PM-2017.56.1.077

License : (CC BY-NC-ND 4.0)

Published Online: 21-May-2019

ARTICLE

ABSTRACT

Historically, the term amyloid was used strictly with reference to human neurodegenerative diseases. Nowadays, it is known that many proteins have the potential to conformational changes into β-sheet structures with tendency to form insoluble amyloid fibrils. Moreover, amyloid proteins are widespread among microorganisms. Bacteria and fungi produce functional amyloids which exhibit all characteristics of amyloid proteins, but in contrast to a numerous group of human toxic amyloids, they play important physiological functions in microorganisms. There is growing evidence that functional amyloids are important in bacterial adhesion and invasion. Furthermore, amyloids make biofilms thicker, rougher, and more resistant to drying out. The increasing interest in better understanding of the nature of these unusual microbial proteins and their role in pathogenesis are likely to contribute to the effective treatment or prevention of infectious diseases in humans.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Aimanianda V., Bayry J., Bozza S., Kniemeyer O., Perruccio K., Elluru S.R., Clavaud C., Paris S., Brakhage A.A., Kaveri S.V., Romani L., Latgé J.P.: Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature, 460, 1117–1121 (2009)
2. Alteri Ch.J., Xicohténcatl-Cortes J., Hess S., Caballero-Olín G., Girón J.A., Friedman R.L.: Mycobacterium tuberculosis produces pili during human infection. Proc. Natl. Acad. Sci. USA, 104, 5145–5150 (2007)
3. Aoki W., Kitahara N., Miura N., Morisaka H., Kuroda K., Ueda M.: Profiling of adhesive properties of the agglutinin-like sequence (ALS) protein family, a virulent attribute of Candida albicans. FEMS Immunol. Med. Microbiol. 65, 121–124 (2012)
4. Barak J.D., Gorski L., Naraghi-Aran P., Charkowski A.O.: Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl. Environ. Microbiol. 71, 5685–5691 (2005)
5. Barnhart M.M., Chapman M.R.: Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006)
6. Bian Z., Brauner A., Li Y., Normark S.: Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J. Infect. Dis. 181, 602–612 (2000)
7. Bokranz W., Wang X., Tschäpe H., Römling U.: Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J. Med. Microbiol. 54, 1171–1182 (2005)
8. Bordeau V., Felden B.: Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone. Nucleic Acids Res. 42, 4682–4696 (2014)
9. Branda S.S., Chu F., Kearns D.B., Losick R., Kolter R.: A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 59, 1229–1238 (2006).
10. Cegelski L., Pinkner J.S., Hammer N.D., Cusumano C.K., Hung C.S., Chorell E., Åberg V., Walker J.N., Seed P.C., Almqvist F., Chapman M.R., Hultgren S.J.: Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nature Chem. Biology, 5, 913–919 (2009)
11. Cheng N., He R., Tian J., Ye P.P., Ye R.D.: Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A. J. Immunol. 181, 22–26 (2008)
12. Chirwa N.T., Herrington M.B.: CsgD, a regulator of curli and cellulose synthesis, also regulates serine hydroxymethyltransferase synthesis in Escherichia coli K-12. Microbiology, 149, 525–535 (2003)
13. Chiti F., Dobson C.M.: Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)
14. Cohen A.S., Calkins E.: Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature, 183, 1202–1203 (1959)
15. Collinson S.K., Emödy L., Trust T.J., Kay W.W.: Thin aggregative fimbriae from diarrheagenic Escherichia coli. J. Bacteriol. 174, 4490–4495 (1992)
16. de Jong W., Wösten H.A., Dijkhuizen L., Claessen D.: Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol. Microbiol. 73, 1128–1140 (2009)
17. DeMarco M.L., Daggett V.: From conversion to aggregation: protofibril formation of the prion protein. Proc. Natl. Acad. Sci. USA, 101, 2293–2298 (2004)
18. Dobson C.M.: Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999)
19. Dueholm M.S., Petersen S.V., Sønderkær M., Larsen P., Christiansen G., Hein K.L., Enghild J.J., Nielsen J.L., Nielsen K.L., Nielsen P.H., Otzen D.E.: Functional amyloid in Pseudomonas. Mol. Microbiol. 77, 1009–1020 (2010)
20. Dueholm M.S., Søndergaard M.T., Nilsson M., Christiansen G., Stensballe A., Overgaard M.T., Givskov M., Tolker-Nielsen T., Otzen D.E., Nielsen P.H.: Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens and P. putida results in aggregation and increased biofilm formation. Microbiology, 2, 365–382 (2013)
21. Ekkers D.M., Claessen D., Galli F., Stamhuis E.: Surface modification using interfacial assembly of the Streptomyces chaplin proteins. Appl. Microbiol. Biotechnol. 98, 4491–4501 (2014)
22. Evans M.L., Chorell E., Taylor J.D., Åden J., Götheson A., Li F., Koch M., Sefer L., Matthews S.J., Wittung-Stafshede P., Almqvist F., Chapman M.R.: The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol. Cell. 57, 445–455 (2015)
23. Flärdh K., Buttner M.J.: Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7, 36–49 (2009)
24. Fowler D.M., Koulov A.V., Alory-Jost C., Marks M.S., Balch W.E., Kelly J.W.: Functional amyloid formation within mammalian tissue. PLoS Biol. 4, e6 (2006)
25. Garcia-Sherman M.C., Lundberg T., Sobonya R.E., Lipke P.N., Klotz S.A.: A unique biofilm in human deep mycoses: fungal amyloid is bound by host serum amyloid P component. NPJ Biofilms Microbiomes, 1. pii, 15009 (2015)
26. Garcia-Sherman M.C., Lysak N., Filonenko A., Richards H., Sobonya R.E., Klotz S.A., Lipke P.N.: Peptide detection of fungal functional amyloids in infected tissue. PLoS One, 21, e86067 (2014)
27. Gebbink M.F., Claessen D., Bouma B., Dijkuhuizen L., Wosten H.A.: Amyloids-a functional coat for microorganisms. Nat. Rev. 3, 333–341 (2005)
28. Gerstel U., Römling U.: Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella Typhimurium. Environ. Microbiol. 3, 638–648 (2001)
29. Glabe C.G.: Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol. Aging. 27, 570–575 (2006)
30. Go N.: The consistency principle in protein structure and pathways of folding. Adv. Biophys. 18, 149–164 (1984)
31. Goldwater P.N., Bettelheim K.A.: Curliated Escherichia coli, soluble curlin and the sudden infant death syndrome (SIDS). J. Med. Microbiol. 51, 1009–1012 (2002)
32. Gophna U., Barlev M., Seijffers R., Oelschlager T.A., Hacker J., Ron E.Z.: Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect. Immun. 69, 2659–2665 (2001)
33. Hammar M., Bian Z., Normark S.: Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc. Natl. Acad. Sci. USA, 93, 6562–6566 (1996)
34. Herbst F.A., Søndergaard M.T., Kjeldal H., Stensballe A., Nielsen P.H., Dueholm M.S.: Major proteomic changes associated with amyloid-induced biofilm formation in Pseudomonas aeruginosa PAO1. J. Proteome. Res. 14, 720–781 (2015).
35. Herczenik E., Gebbink M.F.: Molecular and cellular aspects of protein misfolding and disease. FASEB J. 22, 2115–2133 (2008)
36. Hetz C., Bono M.R., Barros L.F., Lagos R.: Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc. Natl. Acad. Sci. USA, 99, 2696–2701 (2002)
37. Hinson G., Knutton S., Lam-Po-Tang M.K., McNeish A.S., Williams P.H.: Adherence to human colonocytes of an Escherichia coli strain isolated from severe infantile enteritis: molecular and ultrastructural studies of a fibrillar adhesin. Infect. Immun. 55, 393–402 (1987)
38. Hufnagel D.A., Tükel C., Chapman M.R.: Disease to dirt: the biology of microbial amyloids. PLoS Pathog. 9, e1003740 (2013)
39. Hung C., Marschall J., Burnham C.A., Byun A.S., Henderson J.P.: The bacterial amyloid curli is associated with urinary source bloodstream infection. PLoS One, 9, e86009 (2014)
40. Johansson C., Nilsson T., Olsén A., Wick M.J.: The influence of curli, a MHC-I-binding bacterial surface structure, on macrophage-T cell interactions. FEMS Immunol. Med. Microbiol. 30, 21–29 (2001)
41. Kai-Larsen Y., Lüthje P., Chromek M., Peters V., Wang X., Holm A., Kádas L., Hedlund K.O., Johansson J., Chapman M.R., Jacobson S.H., Römling U., Agerberth B., Brauner A.: Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog. 6, e1001010 (2010)
42. Kaper J.B., Nataro J.P., Mobley H.L.: Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 12–40 (2004)
43. Kikuchi T., Mizunoe Y., Takade A., Naito S., Yoshida S.: Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol. Immunol. 49, 875–884 (2005)
44. Klein R.D., Hultgren S.J.: Chaos controlled: discovery of a powerful amyloid inhibitor. Mol. Cell. 57, 391–393 (2015)
45. Klunk W.E., Jacob R.F., Mason R.P.: Quantifying amyloid by congo red spectral shift assay. Methods Enzymol. 309, 285–305 (1999)
46. Kudinha T., Johnson J.R., Andrew S.D., Kong F., Anderson P., Gilbert G.L.: Genotypic and phenotypic characterization of Escherichia coli isolates from children with urinary tract infection and from healthy carriers. Pediatr. Infect. Dis. J. 32, 543–548 (2013)
47. Lagos R., Wilkens M., Vergara C., Cecchi X., Monasterio O.: Microcin E492 forms ion channels in phospholipid bilayer membrane. FEMS Lett. 321, 145–148 (1993)
48. Larsen P., Nielsen J.L., Dueholm M.S., Wetzel R., Otzen D., Nielsen P.H.: Amyloid adhesins are abundant in natural biofilms. Environ. Microbiol. 9, 3077–3090 (2007)
49. Levine H.R.: Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 309, 274–284 (1999)
50. Liu S., Liu Y., Hao W., Wolf L., Kiliaan A.J., Penke B., Rübe C.E., Walter J., Heneka M.T., Hartmann T., Menger M.D., Fassbender K.: TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J. Immunol. 188, 1098–1107 (2012)
51. Liu Z., Niu H., Wu S., Huang R.: CsgD regulatory network in a bacterial trait-altering biofilm formation. Emerg. Microbes Infect. DOI: 10.1038/emi.2014
52. Macindoe I., Kwan A.H., Ren Q., Morris V.K., Yang W., Mackay J.P., Sunde M.: Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proc. Natl. Acad. Sci. USA, 109, 804–811 (2012)
53. Mansan-Almeida R., Pereira A.L., Giugliano L.G.: Diffusely adherent Escherichia coli strains isolated from children and adults constitute two different populations. BMC Microbiol. 13, 22 (2013)
54. Marcoleta A., Marín M., Mercado G., Valpuesta J.M., Monasterio O., Lagos R.: Microcin e492 amyloid formation is retarded by posttranslational modification. J. Bacteriol. 195, 3995–4004 (2013)
55. McCrate O.A., Zhou X., Cegelski L., Curcumin as an Amyloid-indicator Dye in E. coli. Chem. Commun. (Camb). 49, 4193–4195 (2013)
56. Moore R.A., Hayes S.F., Fischer E.R., Priola S.A.: Amyloid formation via supramolecular peptide assemblies. Biochemistry, 46, 7079–7087 (2007)
57. Morris V.K., Ren Q., Macindoe I., Kwan A.H., Byrne N., Sunde M.: Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation. J. Biol. Chem. 286, 15955–15963 (2011)
58. Naidoo N., Ramsugit S., Pillay M.: Mycobacterium tuberculosis pili (MTP), a putative biomarker for a tuberculosis diagnostic test. Tuberculosis, 94, 338–345 (2014)
59. Nishimori J.H., Newman T.N., Oppong G.O., Rapsinski G.J., Yen J.H., Biesecker S.G., Wilson R.P., Butler B.P., Winter M.G., Tsolis R.M., Ganea D., Tükel Ç.: Microbial amyloids induce interleukin 17A (IL-17A) and IL-22 responses via Toll-like receptor 2 activation in the intestinal mucosa. Infect. Immun. 80, 4398–4408 (2012)
60. Nordstedt C., Näslund J., Tjernberg L.O., Karlström A.R., Thyberg J., Terenius L.: The Alzheimer A beta peptide develops protease resistance in association with its polymerization into fibrils. J. Biol. Chem. 269, 30773–30776 (1994)
61. Norinder B.S., Köves B., Yadav M., Brauner A., Svanborg C.: Do Escherichia coli strains causing acute cystitis have a distinct virulence repertoire? Microb. Pathog. 52, 10–16 (2012)
62. Oh J., Kim J.G., Jeon E., Yoo C.H., Moon J.S., Rhee S., Hwang I.: Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J. Biol. Chem. 282, 13601–13609 (2007)
63. Oli M.W., Otoo H.N., Crowley P.J., Heim K.P., Nascimento M.M., Ramsook C.B., Lipke P.N., Brady L.J.: Functional amyloid formation by Streptococcus mutans. Microbiology, 158, 2903–2916 (2012)
64. Olsén A., Herwald H., Wikström M., Persson K., Mattsson E., Björck L.: Identification of two protein-binding and functional regions of curli, a surface organelle and virulence determinant of Escherichia coli. J. Biol. Chem. 277, 34568–34572 (2002)
65. Olsén A., Herwald H., Wikstrum M., Persson K., Mattsson E., Bjorck L.: Identification of two protein-binding and functional regions of curli, a surface organelle and virulence determinant of Escherichia coli. J. Biol. Chem. 277, 34568–34572 (2002).
66. Olsén A., Jonsson A., Normark S.: Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature, 338, 652–655 (1989)
67. Olsén A., Wick M.J., Mörgelin M., Björck L.: Curli, fibrous surface proteins of Escherichia coli, interact with major histocompatibility complex class I molecules. Infect. Immun. 66, 944–949 (1998)
68. Oppong G.O., Rapsinski G.J., Tursi S.A., Biesecker S.G., Klein-Szanto A.J.P., Goulian M., McCauley C., Healy C., Wilson R.P., Tükel C.: Biofilm-associated bacterial amyloids dampen inflammation in the gut: oral treatment with curli fibres reduces the severity of hapten-induced colitis in mice. npj Biofilms and Microbiomes, DOI:10.1038/npjbiofilms.2015.19
69. Osherovich L.Z., Weissman J.S.: Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Cell, 106, 183–194 (2001)
70. Otoo H.N., Lee K.G., Qiu W., Lipke P.N.: Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot. Cell. 7, 776–782 (2008)
71. Pawar D.M., Rossman M.L., Chen J.Ł.: Role of curli fimbriae in mediating the cells of enterohaemorrhagic Escherichia coli to attach to abiotic surfaces. J. Appl. Microbiol. 99, 418–425 (2005)
72. Perutz M.F., Finch J.T., Berriman J., Lesk A.: Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. USA, 99, 5591–5595 (2002)
73. Ramsugit S., Guma S., Pillay B., Jain P., Larsen M.H., Danaviah S., Pillay M.: Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis. Antonie Van Leeuwenhoek, 104, 725–735 (2013)
74. Ramsugit S., Pillay B., Pillay M.: Evaluation of the role of Mycobacterium tuberculosis pili (MTP) as an adhesin, invasin, and cytokine inducer of epithelial cells. Braz. J. Infect. Dis. 20, 160–165 (2016)
75. Rapsinski G.J., Wynosky-Dolfi M.A., Oppong G.O., Tursi S.A., Wilson R.P., Brodsky I.E., Tükel Ç.: Toll-like receptor 2 and NLRP3 cooperate to recognize a functional bacterial amyloid, curli. Infect. Immun. 83, 693–701 (2015)
76. Romero D., Aguilar C., Losick R., Kolter R.: Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl. Acad. Sci. USA, 107, 2230–2234 (2010)
77. Romero D., Vlamakis H., Losick R., Kolter R.: An accessory protein required for anchoring and assembly of amyloid fibers in B. subtilis biofilms. Mol. Microbiol. 80, 1155–1168 (2011)
78. Romero D., Vlamakis H., Losick R., Kolter R.: Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly. J. Bacteriol. 196, 1505–1513 (2014)
79. Römling U., Rohde M., Olsén A., Normark S., Reinköster J.: AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella Typhimurium regulates at least two independent pathways. Mol. Microbiol. 36, 10–23 (2000)
80. Ryu J.H., Kim H., Frank J.F., Beuchat L.R.: Attachment and biofilm formation on stainless steel by Escherichia coli O157:H7 as affected by curli production. Lett. Appl. Microbiol. 39, 359–362 (2004)
81. Schwartz K., Ganesan M., Payne D.E., Solomon M.J., Boles B.R.: Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol. Microbiol. 99, 123–134 (2016)
82. Schwartz K., Syed A.K., Stephenson R.E., Rickard A.H., Boles B.R.: Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 8(6):e1002744 (2012)
83. Shahnawaz M., Soto C.: Microcin amyloid fibrils A are reservoir of toxic oligomeric species. J. Biol. Chem. 287, 11665–11676 (2012)
84. Sheppard D.C., Yeaman M.R., Welch W.H., Phan Q.T., Fu Y., Ibrahim A.S., Filler S.G., Zhang M., Waring A.J., Edwards J.E. Jr.: Functional and structural diversity in the Als protein family of Candida albicans. J. Biol. Chem. 279, 30480–30489 (2004)
85. Sipe J.D., Cohen A.S.: Review: history of the amyloid fibril. J. Struct. Biol. 130, 88–98 (2000)
86. Sitaras C., Naghavi M., Herrington M.B.: Sodium dodecyl sulfate-agarose gel electrophoresis for the detection and isolation of amyloid curli fibers. Anal. Biochem. 408, 328–331 (2011)
87. Smith J.F., Knowles T.P., Dobson C.M., Macphee C.E., Welland M.E.: Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl. Acad. Sci. USA, 103, 15806–15811 (2006)
88. Sobieszczańska B.M., Dobrowolska M.: Synteza fimbrii curli przez szczepy Escherichia coli izolowane z przypadków biegunek dzieciecych. Med. Dośw. Mikrobiol. 56, 239–244 (2005)
89. Stöver A.G., Driks A.: Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. J. Bacteriol. 181, 1664–1672 (1999)
90. Syed A.K., Boles B.R.: Fold modulating function: bacterial toxins to functional amyloids. Front. Microbiol. 5, 401 (2014)
91. Tükel C., Nishimori J.H., Wilson R.P., Winter M.G., Keestra A.M., van Putten J.P., Bäumler A.J.: Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms. Cell. Microbiol. 12, 1495–1505 (2010)
92. Tükel C., Raffatellu M., Humphries A.D., Wilson R.P., Andrews-Polymenis H.L., Gull T., Figueiredo F., Wong M.H., Michelsen K.S., Akçelik M., Adams L.G., Bäumler A.J.: CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Mol. Microbiol. 58, 289–304 (2005)
93. Uhlich G.A., Keen J.E., Elder R.O.: Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157:H7. Appl. Environ. Microbiol. 67, 2367–2370 (2001)
94. Vidal O., Longin R., Prigent-Combaret C., Dorel C., Hooreman M., Lejeune P.: Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J. Bacteriol. 180, 2442–2449 (1998)
95. Wang X., Rochon M., Lamprokostopoulou A., Lünsdorf H., Nimtz M., Römling U.: Impact of biofilm matrix components on interaction of commensal Escherichia coli with the gastrointestinal cell line HT-29. Cell. Mol. Life Sci. 63, 2352–2363 (2006)
96. Westwell-Roper C., Ehses J.A., Verchere B.C.: Activation of Toll-like receptor 2 by islet amyloid polypeptide: a trigger for islet inflammation in type 2 diabetes? Can. J. Diabetes, 36, S18 (2012)
97. Zhou Y., Smith D.R., Hufnagel D.A., Chapman M.R.: Experimental manipulation of the microbial functional amyloid called curli. Methods Mol. Biol. 966, 53–75 (2013)
98. Zogaj X., Bokranz W., Nimtz M., Romling U.: Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrgastrointestinal tract. Infect Immun. 71, 4151–4158 (2003)

EXTRA FILES

COMMENTS