MECHANISMS OF ARSENIC TOXICITY AND TRANSPORT IN MICROORGANISMS

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

33
Reader(s)
132
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 56 , ISSUE 1 (April 2017) > List of articles

MECHANISMS OF ARSENIC TOXICITY AND TRANSPORT IN MICROORGANISMS

Seweryn Mucha / Mateusz Berezowski / Katarzyna Markowska *

Keywords : arsen, toksyczność, transport, wnikanie,   arsenic, toxicity, transport, uptake

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 56, Issue 1, Pages 88-99, DOI: https://doi.org/10.21307/PM-2017.56.1.088

License : (CC BY-NC-ND 4.0)

Published Online: 21-May-2019

ARTICLE

ABSTRACT

Arsenic is an ubiquitous element present in the environment either through geological or anthropogenic activities. Millions of people all over the world are exposed to arsenic mainly via air, drinking water and food sources, which results in higher incidence of cancer. Several mechanisms by which arsenic compounds induce tumorigenesis have been proposed. Arsenic mediates its toxicity by generating oxidative stress, inducing protein misfolding, promoting genotoxicity, hampering DNA repair and disrupting signal transduction. Thus, all organisms have developed multiple pathways for arsenic detoxification. In this article, we review recent advances in the understanding of arsenic toxicity and its transport routes in prokaryotes and eukaryotes, including a dual role of aquaglyceroporins in the uptake and efflux, active transport out of the cell via secondary ion pumps and sequestration of metalloid-thiol conjugates into vacuoles by primary ABC transporters. We believe that such studies are of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid-polluted areas.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Ahn R.W., O’Halloran T.V. i wsp.: A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer. Clin. Cancer. Res. 16, 3607–3617 (2010)
2. Ajees A.A., Rosen B.P.: As(III) S-adenosylmethionine methyltransferases and other arsenic binding proteins. Geomicrobiol. J. 32, 570–576 (2015)
3. Aznab M., Rezaei M.: Induction, consolidation, and maintenance therapies with arsenic as a single agent for acute promyelocytic leukaemia in a 11-year follow-up. Hematol. Oncol. doi: 10.1002/hon.2253. (2015)
4. Banerjee M., Carew M.W., Roggenbeck B.A., Whitlock B.D., Naranmandura H., Le X.C., Leslie E.M.: A novel pathway for arsenic elimination: human multidrug resistance protein 4 (MRP4/ABCC4) mediates cellular export of dimethylarsinic acid (DMAV) and the diglutathione conjugate of monomethylarsonous acid (MMAIII). Mol. Pharmacol. 86, 168–179 (2014)
5. Barrett M.P., Croft S.L.: Management of trypanosomiasis and leishmaniasis. Brit. Med. Bull. 104, 175–196 (2012)
6. Batista-Nascimento L., Toledano M.B., Thiele D.J., Rodrigues-Pousada C.: Yeast protective response to arsenate involves the repression of the high affinity iron uptake system. Biochim. Biophys. Acta, 1833, 997–1005 (2013)
7. Bergquist E.R., Fischer R.J., Sugden K.D., Martin B.D.: Inhibition by methylated organo-arsenicals of the respiratory 2-oxo-acid dehydrogenases. J. Organomet. Chem. 694, 973–980 (2009)
8. Bhattacharjee P., Banerjee M., Giri A.K.: Role of genomic instability in arsenic-induced carcinogenicity. A review. Environ. Int. 53, 29–40 (2013)
9. Bienert G.P., Thorsen M., Schüssler M.D., Nilsson H.R., Wagner A., Tamás M.J., Jahn T.P.: A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol. 6, 10.1186/1741-7007-6-26 (2008)
10. Bobrowicz P., Ulaszewski S.: Arsenical-induced transcriptional activation of the yeast Saccharomyces cerevisiae ACR2 and ACR3 genes requires the presence of the ACR1 gene product. Cell. Mol. Biol. Lett. 3, 13–20 (1998)
11. Bobrowicz P., Wysocki R., Owsianik G., Goffeau A., Ulaszewski S.: Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast, 13, 819–828 (1997)
12. Bruhn D.F., Li J., Silver S., Roberto F., Rosen B.P.: The arsenical resistance operon of IncN plasmid R46. FEMS Microbiol. Lett. 139, 149–153 (1996)
13. Bundschuh J., Toujaque R. i wsp.: One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci. Total Environ. 429, 2–35 (2012)
14. Bustaffa E., Stoccoro A., Bianchi F., Migliore L.: Genotoxic and epigenetic mechanism in arsenic carcinogenicity. Arch. Toxicol. 88, 1043–1067 (2014)
15. Carew M.W., Leslie E.M.: Selenium-dependent and -independent transport of arsenic by the human multidrug resistance protein 2 (MRP2/ABCC2): implications for the mutual detoxification of arsenic and selenium. Carcinogenesis, 31, 1450–1455 (2010)
16. Carlin A., Shi W., Dey S., Rosen B.P.: The ars operon of Escherichia coli confers arsenical and antimonial resistance. J. Bacteriol. 177, 981–986 (1995)
17. Castillo R., Saier M.H.: Functional Promiscuity of Homologues of the Bacterial ArsA ATPases. FEBS Lett. 584, 3089–3094 (2010)
18. Chauhan N.S., Ranjan R., Purohit H.J., Kalia V.C., Sharma R.: Identifcation of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludgemetagenomic library. FEMS Microbiol. Ecol. 67, 130–139 (2009)
19. Chen C.M., Misra T.K., Silver S., Rosen B.P.: Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261, 15030–15038 (1986)
20. Chen J., Bhattacharjee H., Rosen B.P.: ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Mol. Microbiol. 96, 1042–1052 (2015)
21. Chen J., Madegowda M., Bhattacharjee H., Rosen B.P.: ArsP: a methylarsenite efflux permease. Mol. Microbiol. 98, 625–635 (2015)
22. Chen J., Yoshinaga M., Garbinski L.D., Rosen B.P.: Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance. Molecular Microbiology, 100, 945–953 (2016)
23. Chou W.C., Jie C., Kenedy A.A., Jones R.J., Trush M.A., Dang C.V.: Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc. Natl. Acad. Sci. USA, 101, 4578–4583 (2004)
24. Deb D., Biswas A., Ghose A., Das A., Majumdar K.K., Mazumder D.N.G.: Nutritional deficiency and arsenical manifestations: a perspective study in an arsenic-endemic region of West Bengal. Public Health. Nutr. 16, 1644–1655 (2013)
25. Dey S., Dou D., Tisa L.S., Rosen B.P.: Interaction of the catalytic and the membrane subunits of an oxyanion-translocating ATPase. Biochem. Biophys. 311, 418–424 (1994)
26. Dey S., Rosen B.P.: Dual mode of energy coupling by the oxyanion-translocating ArsB protein. J. Bacteriol. 177, 385–389 (1995)
27. Dilda P.J., Hogg P.J.: Arsenical-based cancer drugs. Cancer Treat. Rev. 33, 542–564 (2007)
28. Duan G., Kamiya T., Ishikawa S., Arao T., Fujiwara T.: Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol. 53, 154–163 (2012)
29. Flora S.J., Singh N.: Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review. J. Environ. Biol. 28, 333–347 (2007)
30. Flora S.J.: Arsenic-induced oxidative stress and its reversibility. Free Radic. Biol. Med. 51, 257–281 (2011)
31. Frézard F., Demicheli C.: New delivery strategies for the old pentavalent antimonial drugs. Expert. Opin. Drug Deliv. 7, 1343–1358 (2010)
32. Fu H.L., Meng Y., Ordóñez E., Villadangos A.F., Bhattacharjee H., Gil J.A., Mateos L.M., Rosen B.P.: Properties of arsenite efflux permeases (Acr3) from Alkaliphilus metalliredigens and Corynebacterium glutamicum. J. Biol. Chem. 284, 19887–19895 (2009)
33. Fu H.L., Rosen B.P., Bhattacharjee H.: Biochemical characterization of a novel ArsA ATPase complex from Alkaliphilus metalliredigens QYMF. FEBS Lett. 584, 3089–3094 (2010)
34. Gladysheva T.B., Oden K.L., Rosen B.P.: Properties of the arsenate reductase of plasmid R773. Biochemistry, 33, 7288–7293 (1994)
35. Hossein M.J., Shaki F., Ghazi-Khansari M., Pourhmad J.: Toxicity of arsenic (III) on isolated liver mitochondria: a new mechanistic approach. Iranian J. Pharm. Res. 12, 121–138 (2013)
36. Huang L., Wu H., van der Kuijp T.J.: The health effects of exposure to arsenic-contaminated drinking water: a review by global geographical distribution. Int. J. Environ. Health Res. 25, 432–452 (2015)
37. Hughes M.F.: Arsenic toxicity and potential mechanism of action. Toxicol. Lett. 133, 1–16 (2002)
38. Ibstedt S., Sideri T.C., Grant C.M., Tamás M.J.: Global analysis of protein aggregation in yeast during physiological conditions and arsenite stress. Biology Open, 3, 913–923 (2014)
39. Indriolo E., Na G., Ellis D., Salt D.E., Banks J.A.: A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell, 22, 2045–2057 (2010)
40. International Agency for Research on Cancer: Arsenic, metals, fibres, and dusts. IARC Monogr. Eval. Carcinog. Risks Hum. 100C, 1–526 (2012)
41. Jena N.R.: DNA damage by reactive species: Mechanisms, mutation and repair. J. Biosci. 37, 503–517 (2012)
42. Ji G., Silver S.: Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J. Bacteriol. 174, 3684–3694 (1992)
43. Jiao W.T., Chen W.P., Chang A.C., Page A.L.: Environmental risks of trace elements associated with long-term phosphate
fertilizers applications: a review. Environ. Pollut. 168, 44–53 (2012)
44. Kröncke K.D., Klotz L.O. Zinc fingers as biologic redox switches? Antioxid. Redox Signal. 11, 1015–1027 (2009)
45. Kuroda M., Dey S., Sanders O.I., Rosen B.P.: Alternate energy coupling of ArsB, the membrane subunit of the Ars anion-translocating ATPase. J. Biol. Chem. 272, 326–331 (1997)
46. Lau A., Zheng Y., Tao S., Wang H., Whitman S.A., White E., Zhang D.D.: Arsenic inhibits autophagic flux activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol. Cell. Biol. 33, 2436–2446 (2013)
47. Leslie E.M., Haimeur A., Waalkes M.P.: Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required. J. Biol. Chem. 279, 32700–32708 (2004)
48. Lin Y.F., Walmsley A.R., Rosen B.P.: An arsenic metallochaperone for an arsenic detoxification pump. Proc. Natl. Acad. Sci. USA, 103, 15617–15622 (2006)
49. Litwin I., Bocer T., Dziadkowiec D., Wysocki R.: Oxidative stress and replication-independent DNA breakage induced by arsenic in Saccharomyces cerevisiae. PLoS Genet. 9, e1003640 (2013)
50. López-Maury L., Florencio F.J., Reyes J.C.: Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 185, 5363–5371 (2003)
51. Maciaszczyk E., Wysocki R., Golik P., Lazowska J., Ulaszewski S.: Arsenical resistance genes in Saccharomyces douglasii and other yeast species undergo rapid evolution involving genomic rearrangements and duplications. FEMS Yeast Res. 4, 821–832 (2004)
52. Maciaszczyk-Dziubinska E., Migdal I., Migocka M., Bocer T., Wysocki R.: The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel. FEBS Lett. 584, 726–732 (2010)
53. Maciaszczyk-Dziubinska E., Migocka M., Wawrzycka D., Markowska K., Wysocki R.: Multiple cysteine residues are necessary for sorting and transport activity of the arsenite permease Acr3p from Saccharomyces cerevisiae. Biochim. Biophys. Acta, 1838, 747–755 (2014)
54. Maciaszczyk-Dziubinska E., Migocka M., Wysocki R.: Acr3p is a plasma membrane antiporter that catalyzes As(III)/H+ and Sb(III)/H+ exchange in Saccharomyces cerevisiae. Biochim. Biophys. Acta, 1808, 1855–1859 (2011)
55. Maciaszczyk-Dziubinska E., Wawrzycka D., Sloma E., Migocka M., Wysocki R.: The yeast permease Acr3p is a dual arsenite and antimonite plasma membrane transporter. Biochim. Biophys. Acta, 1798, 2170–2175 (2010)
56. Maciaszczyk-Dziubinska E., Wawrzycka D., Wysocki R.: Arsenic and antimony transporters in eukaryotes. Int. J. Mol. Sci. 13, 3527–3548 (2012)
57. Mansour N.M., Sawhney M., Tamang D.G., Vogl C., Saier M.H.: The bile/arsenite/riboflavin transporter (BART) superfamily. FEBS J. 274, 612–629 (2007)
58. Markowska K., Maciaszczyk-Dziubinska E., Migocka M., Wawrzycka D., Wysocki R.: Identification of critical residues for transport activity of Acr3p, the Saccharomyces cerevisiae As(III)/H+ antiporter. Mol. Microbiol. 98, 162–174 (2015)
59. Meng Y.L., Liu Z., Rosen B.P.: As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J. Biol. Chem. 279, 18334–18341 (2004)
60. Mukhopadhyay R., Rosen B.P.: Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol. Lett. 168, 127–136 (1998)
61. Naranmandura H., Suzuki N., Suzuki K.T.: Trivalent arsenicals are bound to proteins during reductive methylation. Chem. Res. Toxicol. 19, 1010–1018 (2006)
62. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov (19.07.2016)
63. Naujokas M.F., Anderson B., Ahsan H., Aposhian H.V., Graziano J.H., Thomspson C., Suk W.A.: The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ. Health Persp. 121, 295–302 (2013)
64. Noormohamed A., Fakhr M.K.: Arsenic resistance and prevalence of arsenic resistance genes in Campylobacter jejuni and Campylobacter coli isolated from retail meats. Int. J. Environ. Res. Public Health, 10, 3453–3464 (2013)
65. Pan X., Reissman S., Douglas N.R., Huang Z., Yuan D.S., Wang X., McCaffery J.M., Frydman J., Boeke J.D.: Trivalent arsenic inhibits the functions of chaperonin complex. Genetics, 186, 725–734 (2010)
66. Qi Y., Li H., Zhang M., Zhang T., Frank J., Chen G.: Autophagy in arsenic carcinogenesis. Exp. Toxicol. Pathol. 66, 163–168 (2014)
67. Rosen B.P., Weigel U., Karkaria C., Gangola P.: Molecular characterization of an anion pump. The arsA gene product is an arsenite (antimonate)-stimulated ATPase. J. Biol. Chem. 263, 3067–3070 (1988)
68. Rosen B.P.: Biochemistry of arsenic detoxification. FEBS Letters, 529, 86–92 (2002)
69. Rosenstein R., Peschel A., Wieland B., Götz F.: Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J. Bacteriol. 174, 3676–3683 (1992)
70. Sahoo P.K., Kim K.: A review of the arsenic concentration in paddy rice from the perspective of geoscience. Geosci. J. 17, 107–122 (2013)
71. Sarkar A., Paul B.: The global menace of arsenic and its conventional remediation – A critical review. Chemosphere, 158, 37–49 (2016)
72. Sato T., Kobayashi Y.: The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J. Bacteriol. 180, 1655–1661 (1998)
73. Shen S., Li X.F., Cullen W.R., Weinfeld M., Le X.C.: Arsenic binding to proteins. Chem. Rev. 113, 7769–7792 (2013)
74. Subbarayan P.R., Ardalan B.: In the war against solid tumors arsenic trioxide needs partners. J. Gastrointest. Cancer. 45, 363–371 (2014)
75. Sumi D., Taguchi K., Sun Y., Shinkai Y., Kumagai Y.: Monomethylarsonous acid inhibits endothelial nitric oxide synthase activity. J. Health Sci. 51, 728–730 (2005)
76. Tamás M.J., Sharma S.K., Ibstedt S., Jacobson T., Christen P.: Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules, 4, 252–267 (2014)
77. Tan X., Yang L., Xian L., Huang J., Di C., Gu W., Guo S., Yang L.: ATP-binding cassette transporter A1 (ABCA1) promotes arsenic tolerance in human cells by reducing cellular arsenic accumulation. Clin Exp. Pharmacol. Physiol. 41, 287–294 (2014)
78. Thomas D.J., Li J., Waters S.B., Xing W., Adair B.M., Drobna Z., Devesa V., Styblo M.: Arsenic (+3 oxidation state) methyltransferase and methylation of arsenicals. Exp. Biol. Med. 232, 3–11 (2007)
79. Thorsen M., Di Y., Tangemo C., Morillas M., Ahmadpour D., Van der Does C., Wagner A., Johansson E., Posas F., Wysocki R., Tamás M.J.: The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in budding yeast. Mol. Biol. Cell, 17, 4400–4410 (2006)
80. Thorsen M., Jacobson T., Vooijs R., Navarrete C., Bliek T., Schat H., Tamás M.J.: Glutathione serves an extracellular defence function to decrease arsenite accumulation and toxicity in yeast. Mol. Microbiol. 84, 1177–1188 (2012)
81. Tisa L.S., Rosen B.P.: Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein. J. Biol. Chem. 265, 190–194 (1990)
82. Villadangos A.F., Fu H.L., Gil J.A., Messens J., Rosen B.P., Mateos L.M.: Efflux permease CgAcr3-1 of Corynebacterium glutamicum is an arsenite-specific antiporter. J. Biol. Chem. 287, 723–735 (2012)
83. Wang Y., Yang J., Yi J.: Redox sensing by proteins: oxidative modifications on cysteines and the consequent events. Antioxid. Redox Signal. 16, 649–657 (2012)
84. Wang Z., Zhang H., Li X.F., Le X.C.: Study of interactions between arsenicals and thioredoxins (human and E. coli) using mass spectrometry. Rapid Commun. Mass. Spectrom. 21, 3658–3666 (2007)
85. Wawrzycka D., Sobczak I., Bartosz G., Bocer T., Ulaszewski S., Goffeau A.: Vmr1p is a novel vacuolar multidrug resistance ABC transporter in Saccharomyces cerevisiae. FEMS Yeast Res. 10, 828–838 (2010)
86. WHO: Guidelines for Drinking-water Quality. World Health Organisation 4, 315–318 (2011)
87. Wu B., Song J., Beitz E.: Novel channel-enzyme fusion proteins confer arsenate resistance. J. Biol. Chem. 285, 40081–40087 (2010)
88. Wu J., Rosen B.P.: The ArsR protein is a trans-acting regulatory protein. Mol. Microbiol. 5, 1331–1336 (1991)
89. Wu J., Tisa L.S., Rosen B.P.: Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase. J. Biol. Chem. 267, 12570–12576 (1992)
90. Wysocki R., Bobrowicz P., Ulaszewski S.: The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J. Biol. Chem. 272, 30061–30066 (1997)
91. Wysocki R., Clemens S., Augustyniak D., Golik P., Maciaszczyk E., Tamás M.J., Dziadkowiec D.: Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p. Biochem. Biophys. Res. Commun. 304, 293–300 (2003)
92. Wysocki R., Fortier P.K., Maciaszczyk E., Thorsen M., Leduc A., Odhagen A., Owsianik G., Ulaszewski S., Ramotar D., Tamás M.J.: Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p. Mol. Biol. Cell, 15, 2049–2060 (2004)
93. Xia X., Baldwin S.A. i wsp.: Investigation of the structure and function of a Shewanella oneidensis arsenical-resistance family transporter. Mol. Membr. Biol. 25, 691–705 (2008)
94. Yang H.C., Cheng J., Finan T.M., Rosen B.P., Bhattacharjee H.: Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J. Bacteriol. 187, 6991–6997 (2005)
95. Yang H.C., Fu H.L., Lin Y.F., Rosen B.P.: Pathways of arsenic uptake and efflux. Curr. Top. Membr. 69, 325–358 (2012)
96. Yang H.C., Rosen B.P.: New mechanisms of bacterial arsenic resistance, Biomedical Journal, 39, 5–13 (2016)
97. Yang Y., Wu S., Lilley R.M., Zhang R.: The diversity of membrane transporters encoded in bacterial arsenic-resistance operons. PeerJ 3:e943 (2015)
98. Ye J., Rensing C., Rosen B.P., Zhu Y.G.: Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci. 17, 155–162 (2012)
99. Yoshinaga M., Rosen B.P.: A C-As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters. Proc. Natl. Acad. Sci. USA, 111, 7701–7706 (2014)
100. Zhao L., Chen S., Jia L., Shu S., Zhu P., Liu Y.: Selectivity of arsenite interaction with zinc finger proteins. Metallomics, 4, 988–994 (2012)
101. Zhao Y., Toselli P., Li W.: Microtubules as a critical target for arsenic toxicity in lung cells in vitro and in vivo. Int. J. Environ. Res. Public Health 9, 474–495 (2012)
102. Zheng W., Scifleet J., Yu X., Jiang T., Zhang R.: Function of arsATorf7orf8 of Bacillus sp. CDB3 in arsenic resistance. J. Environ. Sci. 25, 1386–1392 (2013)
103. Zhou X, Cooper K.L., Sun X., Liu K.J, Hudson L.G.: Selective Sensitization of Zinc Finger Protein Oxidation by ROS Through Arsenic Binding. J. Biol. Chem. 290, 18361–18369 (2015)
104. Zhu Y.G., Yoshinaga M., Zhao F.J., Rosen B.P.: Earth abides arsenic biotransformations. Annu. Rev. Earth and Planet Sci. 42, 443–467 (2014)

EXTRA FILES

COMMENTS