Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 0079-4252
eISSN: 2545-3149





Volume / Issue / page

Related articles

VOLUME 56 , ISSUE 2 (April 2017) > List of articles


Agnieszka Mierek-Adamska / Wioleta Tylman-Mojżeszek / Zuzanna Znajewska / Grażyna B. Dąbrowska *

Keywords : cyjanobakterie, metale ciężkie, metalotioneiny, mykobakterie, Pseudomonas, cyanobacteria, heavy metals, metallothioneins, mycobacteria, Pseudomonas

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 56, Issue 2, Pages 171-179, DOI:

License : (CC BY-NC-ND 4.0)

Published Online: 21-May-2019



Heavy metals are found in all living organisms where, as indispensable microelements (e.g. zinc, iron, copper), are involved in endless metabolic processes. However, living organisms are also at a risk of exposure to highly toxic metals, including cadmium or lead, which do not play any physiological role. Among multiple mechanisms associated with the maintenance of micronutrient homeostasis and detoxification of unwanted metals, there is a family of low-molecular-weight, cysteine-rich proteins, able to chelate multiple metal ions i.e. the metallothioneins (MTs). They are widely distributed among Eucaryota, however, they have also been found in some limited Procaryota, including cyanobacteria, pseudomonads and mycobacteria. These bacterial MTs differ in terms of primary structure, the number and type of metal ions they bind, as well as with regard to their physiological functions. The expression of bacterial MTs is regulated by metals via metalosensors. MTs from cyanobacteria seem to be involved in zinc homeostasis, while in Pseudomonas they are linked to cadmium detoxification. In Mycobacterium, MTs bind copper ions and may play a pivotal role in the virulence of these bacteria. The presence of MTs in other groups of bacteria remains questionable. Problems with identification of new bacterial MTs are mainly associated with low level of homology between MT amino acid sequences of different bacterial groups. Further research is needed to evaluate the physiological functions of metallothioneins in Procaryota.

Content not available PDF Share



1. Binz P.A., Kägi J.H.R.: Metallothionein: molecular evolution and classification (w) Metallothionein IV, red. Klaassen C.D. Springer, Basel 1999, s. 7–13

2. Bruins M.R., Kapil S., Oehme F.W.: Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45, 198–207 (2000)

3. Blindauer C.A., Harrison M.D., Parkinson J.A., Robinson A.K., Cavet J.S., Robinson N.J., Sadler P.J.: A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity. Proc. Natl. Acad. Sci. USA, 98, 9593–9598 (2001)

4. Blindauer C.A., Harrison M.D., Robinson A.K., Parkinson J.A., Bowness P.W., Sadler P.J., Robinson N.J.: Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol. Microbiol. 45, 1421–1432 (2002)

5. Blindauer C.A., Sadler P.J.: How to hide zinc in a small protein. Acc. Chem. Res. 38, 62–69 (2005)

6. Blindauer C.A.: Bacterial metallothioneins (w) Metallothioneins and related chelators. Metal ions in life science vol. 5, red. Sigel A., Sigel H., Sigiel R.K.O. Royal Society of Chemistry, Cambridge 2009, s. 51–81

7. Blindauer C.A.: Bacterial metallothioneins: past, present, and questions for the future. J. Biol. Inorg. Chem. 16, 1011–1024 (2011)

8. Busenlehner L.S., Pennella M.A., Giedroc D.P.: The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol. Rev. 27, 131–143 (2003)

9. Capdevila M., Atrian S.: Metallothionein protein evolution: a miniassay. J. Biol. Inorg. Chem. 16, 977–989 (2011)

10. Capdevila M., Bofill R., Palacios Ò., Atrian S.: State-of-art of metallothioneins at the beginning of the 21st century. Coord. Chem. Rev. 256, 46–62 (2012)

11. Cavet J.S., Meng W., Pennella M.A., Appelhoff R.J., Giedroc D.P., Robinson N.J.: A nickel-cobalt sensing ArsR-SmtB family repressor: contributions of cytosol and effector binding sites to metal selectivity. J. Biol. Chem. 277, 38441–38448 (2002)

12. Clemens S.: Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707–1719 (2006)

13. Dąbrowska G., Mierek-Adamska A., Goc A.: Characteristics of Brassica napus L. metallothionein genes: expression in organs and during seed germination. Austr. J. Crops Sci. 7, 1324–1332 (2013)

14. Daniels M.J., Turner-Cavet J.S., Selkirk R., Sun H., Parkinson J.A., Sadler P.J., Robinson N.J.: Coordination of Zn2+ (and Cd2+) by prokaryotic metallothionein. Involvement of His-imidazole. J. Biol. Chem. 273, 22957–22961 (1998)

15. Darwin K.H.: Mycobaterium tuberculosis and copper: a newly appreciated defense against an old foe? J. Biol. Chem. 290, 18962–18966 (2015)

16. Enshaei M., Khanafari A., Sepahey A.A.: Metallothionein induction in two species of Pseudomonas exposed to cadmium and copper contamination. Iran J. Environ. Health Sci. Eng. 7, 287–298 (2010)

17. Erbe J.L., Taylor K.B., Hall L.M.: Metalloregulation of the cyanobacterial smt locus: identification of SmtB binding sites and direct interaction with metals. Nucl. Acids Res. 23, 2472–2478 (1995)

18. Festa R.A., Jones M.B., Butler-Wu S., Sinsimer D., Gerads R., Bishai W.R., Peterson S.N., Darwin K.H.: A novel copper-responsive regulon in Mycobacterium tuberculosis. Mol. Microbiol. 79, 133–148 (2011)

19. Foster A.W., Robinson N.J.: Promiscuity and preferences of metallothioneins: the cell rules. BMC Biol. 9, 25–28 (2011)

20. Freisinger E.: Plant MTs – long neglected members of the metal- lothionein superfamily. Dalton Trans. 47, 6663–6675 (2008)

21. Godt J., Scheidig F., Grosse-Siestrup C., Esche V., Brandenburg P., Reich A., Gronberg D.A.: The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 1, 22 (2006)

22. Gold B., Deng H., Bryk R., Vargas D., Eliezer D., Roberts J., Jiang X., Nathan C.: Identification of a copper-binding metallothionein in pathogenic mycobacterial. Nat. Chem. Biol. 4, 609–616 (2008)

23. Gupta A., Whitton B.A., Morby A.P., Huckle J.W., Robinson N.J.: Amplification and rearrangement of a prokaryotic metallothionein locus smt in Synechococcus PCC 6301 selected for tolerance to cadmium. Proc. Biol. Sci. 248, 273–281 (1992)

24. Hänsch R., Mendel R.R.: Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259–266 (2009)

25. Higham D.R, Sadler PJ., Scawen M.D.: Cadmium-resistant Pseudomonas putida synthesizes novel cadmium proteins. Science, 225, 1043–1046 (1984)

26. Higham D.P., Sadler P.J., Scawen M.D.: Cadmium-binding proteins in Pseudomonas putida: pseudothioneins. Environ. Health Persp. 65, 5–11 (1986)

27. Higgins K.A., Giedroc D.: Insights into protein allostery in the CsoR/RcnR family of transcriptional repressors. Chem. Lett. 43, 20–25 (2014)

28. Huckle J.W., Morby A.P., Turner J.S., Robinson N.J.: Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol. Microbiol. 7, 177–187 (1993)

29. Koszucka A.M., Dąbrowska G.: Roślinne metalotioneiny. Post. Biol. Kom. 33, 285–302 (2006)

30. Kuroda M., Hayashi H., Ohta T.: Chromosome-determined zinc-responsible operon czr in Staphylococcus aureus strain 912. Microbiol. Immunol. 43, 115–125 (1999)

31. Lane B., Kajoika R., Kennedy R.: The wheat-germ Ec protein is a zinc-containing metallothionein. Biochem. Cell Biol. 65, 1001–1005 (1987)

32. Lane T.W., Saito M.A., George G.N., Pickering I.J, Prince R.C., Morel F.M.M.: A cadmium enzyme from a marine diatom. Nature, 435, 42 (2005)

33. Leszczyszyn O.I., White C.R.J., Blindauer C.A.: The isolated Cys2His2 site in Ec metallothionein mediates metal-specific protein folding. Mol. Bio. Syst. 6, 1592–1603 (2010)

34. Leszczyszyn O.I., Imam H.T., Blindauer C.A.: Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics, 5, 1146–1169 (2013)

35. Liu T., Nakashima S., Hirose K., Shibasaka M., Katsuhara M., Ezaki B., Giedroc P.D., Kasamo K.: A novel cyanobacterial SmtB/ArsR family repressor regulates the expression of a CPX-ATPase and a metallothionein in response to both Cu(I)/Ag(I) and Zn(II)/Cd(II). J. Biol. Chem. 279, 17810–17818 (2004)

36. Liu T., Nakashima S., Hirose K., Uemura Y., Shibasaka M., Katsuhara M., Kasamo K.: A metallothionein and CPx-ATPase handle heavy-metal tolerance in the filamentous cyanobacterium Oscillatoria brevis. FEBS Lett. 542, 159–163 (2003)

37. Ma Z., Jacobsen F.E., Giedroc D.P.: Metal transporters and metal sensors: how coordination chemistry controls bacterial metal homeostasis. Chem. Rev. 109, 4644–4681 (2009)

38. Maret W., Sandstead H.: Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elem. Med. Biol. 20, 3–20 (2005)

39. Margoshes M., Vallee B.L.: A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 79, 4813–4814 (1957)

40. Morby A.P., Turner J.S., Huckle J.W., Robinson N.J.: SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA-protein complex. Nucl. Acids Res. 21, 921–925 (1993)

41. Naik M.M., Pandey A., Dubey S.K.: Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicol. Environ. Saf. 79, 129–133 (2012)

42. Olafson R.W., Abel K., Sim R.G.: Prokaryotic metallothionein: preliminary characterization of a blue-green alga heavy metal-binding protein. Biochem. Biophys. Res. Commun. 89, 36–43 (1979)

43. Olafson R.W., Loya S., Sim R.G.: Physiological parameters of prokaryotic metallothionein induction. Biochem. Biophys. Res. Commun. 95, 1495–1503 (1980)

44. Olafson R.W., McCubbin W.D., Kay C.M.: Primary- and secondary- structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium. Biochem. J. 251, 691–699 (1988)

45. Palmer C.M., Guerinot M.L.: Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat. Chem. Biol. 5, 333–340 (2009)

46. Pedersen M., Larsen A., Stoltenberg M., Penkova M.: Cell death in the injured brain: Roles of metallothioneins. Prog. Histochem. Cytochem. 44, 1–27 (2009)

47. Pedersen M., Larsen A., Stoltenberg M., Penkova M.: The role of metallothionein in oncogenesis and cancer prognosis. Prog. Histochem. Cytochem. 44, 29–64 (2009)

48. Robinson N.J., Tommey A.M., Kuske C., Jackson P.J.: Plant metallothioneins. Biochem. J. 295, 1–10 (1993)

49. Robinson N.J., Whitehall S.K., Cavet J.S.: Microbial metallothioneins. Adv. Microb. Physiol. 44, 183–213 (2001)

50. Rowland J.L., Niederweis M.: Resistance mechanism of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis, 92, 202–210 (2012)

51. Shi J., Lindsay W.P., Huckle J.W., Morby A.P., Robinson N.J.: Cyanobacterial metallothionein gene expressed in Escherichia coli. Metal-binding properties of the expressed protein. FEBS Lett. 2–3, 159–163 (1992)

52. Shimizu T., Hiyama T., Ikeuchi M., Inoue Y.: Nucleotide sequence of a metallothionein gene of the thermophilic cyanobacterium Synechococcus vulcanus. Plant Mol. Biol. 20, 565–567 (1992)

53. Silver S., Phung L.T.: Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50, 753–789 (1996)

54. Stępkowska I.M.: Właściwości biologiczne metalotionein i ich udział w procesach oksydoredukcyjnych w komórkach, ze szczególnym uwzględnieniem ośrodkowego układu nerwowego człowieka. Post. Biol. Kom. 37, 869–885 (2010)

55. Sutherland D.E., Stillman M.J.: The “magic numbers” of metallothionein. Metallomics, 3, 444–463 (2011)

56. Thelwell C., Robinson N.J., Turner-Cavet J.S.: An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc. Natl. Acad. Sci. USA, 95, 10728–10733 (1998)

57. Turner J.S., Glands P.D., Samson A.C.R., Robinson N.J.: Zn2+-Sensing by the cyanobacterial metallothionein repressor SmtB: different motifs mediate metal-induced protein-DNA dissociation. Nucl. Acids Res. 24, 3714–3721 (1996)

58. Turner J.S., Morby A.P., Whitton B.A., Gupta A., Robinson N.J.: Construction and characterisation of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. J. Biol. Chem. 268, 4494–4498 (1993)

59. Vašák M.: Advances in metallothionein structure and functions. J. Trace Elem. Med. Biol. 19, 13–17 (2005)

60. Waldron K.J., Robinson N.J.: How do bacterial cells ensure that metalloproteins get the correct metal? Nat. Rev. Microbiol. 7, 25–35 (2009)