NON-PANDEMIC HUMAN CORONAVIRUSES – CHARACTERISTICS AND DIAGNOSTICS

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

16
Reader(s)
44
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 56 , ISSUE 2 (April 2017) > List of articles

NON-PANDEMIC HUMAN CORONAVIRUSES – CHARACTERISTICS AND DIAGNOSTICS

Edyta Abramczuk * / Katarzyna Pancer / Włodzimierz Gut / Bogumiła Litwińska

Keywords : koinfekcje wirusowe, koronawirusy człowieka, viral co-infections, human coronaviruses

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 56, Issue 2, Pages 205-213, DOI: https://doi.org/10.21307/PM-2017.56.2.205

License : (CC BY-NC-ND 4.0)

Published Online: 22-May-2019

ARTICLE

ABSTRACT

In this article, the characteristics of human coronaviruses (HCoV) are presented. Currently, six human coronaviruses are known: HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, HCoV-SARS and HCoV-MERS. The first human coronaviruses were described in the sixties of the twentieth century, the last one, HCoV-MERS, in 2012 y. Coronaviruses can cause mild, asymptomatic infections as well as severe respiratory diseases, like pneumonia and bronchiolitis. The symptoms of HCoV infection are mainly: fever, nasopharyngitis, cough, bronchiolitis, pneumonia. Infections due to HCoV occur during the whole human life, but aremost frequent in children. They can occur throughout the year, but are most common in the winter season. Treatment of HCoV infections is usually symptomatic. Diagnosis of HCoV is mainly based on molecular technics such as quantitative PCR. Serological tests are only used for epidemiological purposes.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Abdul-Rasool S., Fielding B.C.: Understanding human coronavirus HCoV-NL63. Open Virol. J. 4, 76–87 (2010)

2. Abramczuk E., Pancer K., Gut W., Lipka B., Litwińska B.: The frequency of RSV, HCoV and MERS-CoV in children with acute respiratory tract infection, Poland 2013–2014. 17th Annual Meeting of the European Society for Clinical Virology, Praha (2014)

3. Ambrosioni J.: Role of rhinovirus load in the upper respiratory tract and severity of symptoms in lung transplant recipients. J. Clin. Virol. 64, 1–5 (2015)

4. Amini R., Jahanshiri F., Amini Y., Sekawi Z., Jalilian F.A.: Detection of human coronavirus strain HKU1 in a 2 years old girl with asthma exacerbation caused by acute pharyngitis. Virol. J. 9, 142 (2012)

5. Belouzard S., Millet J.K., Licitra B.N., Whittaker G.R.: Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4 (2012)

6. Cavanagh D.: Coronaviruses in poultry and other birds. Avian. Pathol. 34, 439–448 (2005)

7. Cebey-López M.: Viral co-infections in pediatric patients hospitalized with lower tract acute respiratory infections. PloS One, 10 (2015)

8. Chiu S.S.: Human Coronavirus NL63 Infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China. Clin. Infect. Dis. 40, 1721–1729 (2005)

9. Choi E.H., Sung J.Y. i wsp.: The association of newly identified respiratory viruses with lower respiratory tract infections in Korean children, 2000–2005. Clin. Infect. Dis. 43, 585–92 (2006)

10. Chun J.K., Kim D.S. i wsp.: Establishing a surveillance network for severe lower respiratory tract infections in Korean infants and young children. Eur. J. Clin. Microbiol. Infect. Dis. 28, 841–844 (2009)

11. Corman V.M., Drosten C. i wsp.: Detection of a novel human coronavirus by real-time reverse- transcription polymerase chain reaction. Euro Surveill. 17 (2012)

12. Corman V.M., Drosten C. i wsp.: Assay for laboratory confirmation of novel human coronavirus (hCoV-MC) infections. Euro Surveill. 17, 1–9 (2012)

13. Danielsson N., Catchpole M. i wsp.: Novel coronavirus associated with severe respiratory disease: Case definition and public health measure. Euro Surveill. 17 (2012)

14. da Silvaa R.C., Santos N. i wsp.: Frequency of viral etiology in symptomatic adult upper respiratory tract infections. Brazj. Infect. Dis. 19, 30–35 (2015)

15. Dijkman R., Jebbink M.F., Idrissi N.B.E., Pyrć K., Muller M.A., Kuijpers T.W., Zaaijer H.L., van der Hoek L.: Human coronavirus NL63 and 229E seroconversion in children. J. Clin. Microbiol. 46, 2368–2373 (2008)

16. Dijkman R., Hoek L.: Human coronaviruses 229E and NL63: close yet still so far. J. Formos. Med. Assoc. 108, 270–279 (2009)

17. Esper F., Ou Z., Huang Y.T.: Human coronaviruses and uncommon in patients with gastrointestinal illness. J. Clin. Virol. 48, 131–133 (2010)

18. Falsey A.R., Taylor S. i wsp.: Respiratory syncytial virus and other respiratory viral infections in older adults with moderate to severe influenza-like illness. J. Infect. Dis. 209 (2014)

19. Feng L., Yang W. i wsp.: Viral etiologies of hospitalized acute lower respiratory infection patients in China, 2009–2013. PloS One, 9 (2014)

20. Garbino J., Soccal P.M., Aubert J.D., Rochat T., Meylan P., Thomas Y., Tapparel C., Bridevaux P.O., Kaiser L.: Respiratory viruses in bronchoalveolar lavage: a hospital-based cohort study in adults. Thorax, 64, 399–404 (2009)

21. Gaunt E.R., Hardie A., Claas E.C.J., Simmonds P., Templeton K.E.: Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex teal-time PCR method. J. Clin. Microbiol. 48, 2940–2947 (2010)

22. Gerna G., Campanini G., Rovida F., Percivalle E., Sarasini A., Marchi A., Baldanti F.: Genetic variability of human coronavirus OC43-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised Patients. J. Med. Virol. 78, 938–949 (2006)

23. Greer R. M.: Do rhinoviruses reduce the probability of viral co-detection during acute respiratory tract infections? J. Clin. Virol. 45, 10–15 (2009)

24. Gunson R.N., Collins T.C., Carman W.F.: Real-time PCR detection of 12 respiratory viral infections in four triplex reactions.
J. Clin. Virol. 33, 341–344 (2005)

25. Han H.J., Wen H.L., Zhou C.M., Chen F.F., Luo L.M., Liu J.W., Yu X.J.: Bats as reservoirs of severe emerging infectious diseases. Virus Res. 205, 1–6 (2015)

26. Hoek L., Pyrć K., Berkhout B.: Human coronavirus NL63, a new respiratory virus. FEMS Microbiol. Rev. 30, 760–773 (2006)

27. Hoffmann J., Rabezanehary H., Randriamarotia M., Ratsimbasoa A., Najjar J., Varnet G., Contamin B., Paranhos-Baccala G.: Viral and atypical bacterial etiology of acute respiratory infections in children under 5 years old living in a rural tropical area of Madagascar. PloS One, 7 (2012)

28. Jevšnik M., Uršič T., Žigon N., Lusa L., Krivec U., Petrovec M.: Coronavirus infections in hospitalized pediatric patients with acute respiratory tract disease. BMC Infect. Dis. 12, 365 (2012)

29. Kocik J.: Diversity of influenza-like illness etiology in Polish armed forces in influenza epidemic season. BTICC, 61, 489–494 (2014)

30. Liu T.: Viral etiology of acute respiratory tract infections in hospitalized children and adults in Shandong province. China Virol. J. 12, 168 (2015)

31. Liao X., Rong Z. i wsp.: New epidemiological and clinical signatures of 18 pathogens from respiratory tract infections based on a 5-year study. PloS One, 10 (2015)

32. Lukšić I., Kearns P.K., Scott F., Rudan I., Campbell H., Nair H.: Viral etiology of hospitalized acute lower respiratory infections in children under 5 years of age – a systematic review and meta-analysis. Croat. Med. J. 54, 122–134 (2013)

33. Lundin A., Trybala E. i wsp.: Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the Middle East respiratory syndrome virus. PLOS Pathogens, 10 (2014)

34. Mackay I.M., Arden K.E., Speicher D.J., O’Neil N.T., McErlean P.K., Greer R.M., Nissen M.D., Sloots T.P.: Co-circulation of four human coronaviruses (HCoVs) in Queensland children with acute respiratory tract illnesses in 2004. Viruses, 4, 637–653 (2012)

35. Mesel-Lemoine M., Tangy F. i wsp.: A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes. J. Virol. 86, 7577–7587 (2012)

36. Moes E., Ranst M.V. i wsp.: A novel pancoronavirus RT-PCR assay: frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium. BMC Infect. Dis. 5 (2005)

37. Minosse C., Capobianchi M.R. i wsp.: Frequency of detection of respiratory viruses in the lower respiratory tract of hospitalized adults. J. Clin. Virol. 42, 215–220 (2008)

38. Nishiura H., Mizumoto K., Ejima M., Zhong Y., Cowling B.J., Omori R.: Incubation period as part of the case definition of severe respiratory illness caused by a novel coronavirus. Euro Surveill. 17 (2012)

39. Perlman S., Netland J.: Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol. 7, 439–450 (2009)

40. Pyrć K., Berkhout B., Hoek L.: The novel human coronavirus NL63 and HKU1. J. Virol. 81, 3051–3057 (2007)

41. Pyrć K., Pickles R. i wsp.: Culturing the Uncurturable: Human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures. J. Virol. 84, 11255–11263 (2010)

42. Pyrc K., Potempa J. i wsp.: Use of sensitive, broad-spectrum molecular assay and human airway epithelium cultures for detection of respiratory pathogens. PloS One, 7, e: 32582 (2012)

43. Raj V.S., Osterhaus A.D.M.E., Fouchier R.A.M., Haagmans B.L.: MERS: emergence of a novel human coronavirus. Curr. Opin. Virol. 58, 62 (2014)

44. Ren L., Wang J. i wsp.: Prevalence of human respiratory viruses in adults with acute respiratory tract infections in Beijing, 2005–2007. Clin. Microbiol. Infect. 15, 1146–1153 (2009)

45. Sarah L.W., Little Z.R., Keevil C.W.: Human coronavirus 229E remains infectious on common touch surface materials. mBio. 6, 1697–1715 (2015)

46. Sloots T.P., Whiley D.M., Lambert S.B., Nissen M.D.: Emerging respiratory agents: New viruses for old diseases? J. Virol. 42, 233–243 (2008)

47. Ujike M., Taguchi F.: Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses, 7, 1700–1725 (2015)

48. Vabret A., Dina J., Gouarin S., Petitjean J., Corbet S., Freymuth F.:
Detection of the new human coronavirus HKU1: a report of 6 cases. Clin. Inf. Dis. 42, 634–639 (2006)

49. Vabret A., Dina J., Brison E., Brouard J., Freymuth F.: Human coronaviruses (HCoV). Pathol. Bio. 57, 149–160 (2009)

50. Vijaykrishna D., Smith G.J.D., Zhang J.X., Peiris J.S.M., Chen H., Guan Y.: Evolutionary insights into the ecology of coronaviruses. J. Virol. 81, 4012–4020 (2007)

51. World Health Organization: Middle East respiratory syndrome coronavirus (MERS-CoV) summary of current situation. Literature update and risk assessment 7 July 2015, http://apps. who.int/iris/bitstream/10665/179184/2/WHO_MERS_RA_15.1_eng.pdf (16.09.2016)

52. Xiao F., Burns K.D. i wsp.: Increased urinary angiotensin-converting enzyme 2 in renal transplant patients with diabetes. PloS One, 7 (2012)

53. Yang Y., Liu C., Du L., Jiang S., Shi Z., Baric R.S., Li F.: Two mutation were critical for Bat0to-Human transmission of Middle East respiratory syndrome coronavirus. J. Virol. 89, 87–90 (2015)

54. Zaki A.M., Fouchier R.A.M. i wsp.: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367,1814–1820 (2012)

55. Zhu1 X., Liu1 Q., Du L., Lu L., Jiang S.: Receptor-binding domain as a target for developing SARS vaccines. J. Thorac. Dis. 5 (2013)

EXTRA FILES

COMMENTS