UNDERGROUND COMMUNICATION – THE NEW ELEMENTS OF SIGNALLING PATHWAYS OF ARBUSCULAR MYCORRHIZAL SYMBIOSIS

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

7
Reader(s)
24
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 56 , ISSUE 3 (April 2017) > List of articles

UNDERGROUND COMMUNICATION – THE NEW ELEMENTS OF SIGNALLING PATHWAYS OF ARBUSCULAR MYCORRHIZAL SYMBIOSIS

Katarzyna Jas * / Urszula Małolepsza

Keywords : mevalonic acid, mycorrhiza, reductase 1 3-hydroxy-3-methylglutaryl coenzyme A, strigolactones, signaling pathway

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 56, Issue 3, Pages 275-281, DOI: https://doi.org/10.21307/PM-2017.56.3.275

License : (CC BY-NC-ND 4.0)

Published Online: 22-May-2019

ARTICLE

ABSTRACT

Mycorrhiza is a symbiotic relationship between living cells of the roots of higher plants and non-pathogenic fungi which inhabit soil and belong to Glomeromycota (endomycorrhizae) and Basidiomycota, Ascomycota (ectomycorrhizae). Although the phenomenon of mycorrhiza was discovered by a Polish botanist F.D. Kamieński already in 1881, various stages of establishing the symbiotic relationship between the partners are still not fully understood and explained. According to the current knowledge, the roots of host plants release strigolactones, which stimulate germination and branching of spores of arbuscular fungi. As a result, the fungi synthesize molecular signals, i.e. chitooligosaccharides (COs) and lipochitooligosaccharides (LCOS), called MycF factors. Thanks to the development of molecular biology techniques the probable cascade of events during the recognition of fungal MycF factor by the host-plant has been outlined. The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMGR1) and also its product, mevalonic acid (MVA), play an essential role in the biosynthesis of sterols and isoprenoids in a plant cell. The recent studies indicate that these compounds may also play a very important role during establishing of the symbiotic mycorrhizal relationship. It is believed that MVA detects and transmits MycF factor to a cell nucleus of a host-plant triggering numerous necessary mechanisms in the plant cell to activate next steps of the mycorrhizal symbiosis. The discovery of HMGR1 and MVA sheds new light on symbiotic nature of mycorrhiza. This paper is a review of the current knowledge on the signal exchange during symbiotic interactions between mycorrhizal fungi and host plants.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Akiyama K., Matsuzaki K., Hayashi H.: Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824–827 (2005)

2. Berch S.M., Massicotte H.B., Tackaberry L.E.: Re-publication of a translation of ‘The vegetative organs of Monotropa hypopitys L.’ published by F. Kamienski in 1882, with an update on Monotropa mycorrhizas. Mycorrhiza, 15, 323–332 (2005)

3. Bonfante P., Genre A.: Mechanisms underlying beneficial plant – fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, doi 10.1038/ncomms1046 (2010)

4. Buendia L., Wang T., Girardin A., Lefebvre B.: The LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. New Phytol. 210, 184–195 (2016)

5. Ch.W. Dunk., Lebel T., Keane P.J.: Characterisation of ectomycorrhizal formation by the exotic fungus Amanita muscaria with Nothofagus cunninghamii in Victoria, Australia. Mycorrhiza, 22, 135–147 (2012)

6. Douds Jr.D.D., Pfeffer P.E., Shachar-Hill Y.: Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas (w) Arbuscular mycorrhizas physiology and function, red. Y. Kapulnik, Jr.D.D. Douds, Springer Netherlands, Dordrecht, 2000, s. 107–129

7. Endre G., Kereszt A., Kevei Z., Mihacea S., Kaló P., Kiss G.B.: A receptor kinase gene regulating symbiotic nodule development. Nature, 417, 962–966 (2002)

8. Field K.J., Rimington W.R., Bidartondo M.I., Allinson K.E., Beerling D.J., Cameron D.D., Duckett J.G., Leake J.R., Pressel S.: First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2. New Phytol. 205, 743–756 (2015)

9. File A.L., Klironomos J., Maherali H., Dudley S.A.: Plant kin recognition enhances abundance of symbiotic microbial partner. PLoS ONE, 7, e45648 (2012)

10. Genre A., Russo G.: Does a common pathway transduce symbiotic signals in plant-microbe interactions? Front. Plant Sci. 7, doi 10.3389/fpls.2016.00096 (2016)

11. Hawkins B.J., Jones M.D., Kranabetter J.M.: Ectomycorrhizae and tree seedling nitrogen nutrition in forest restoration. New Forests, 46, 747–771 (2015)

12. Helber N., Wippel K., Sauer N., Schaarschmidt S., Hause B., Requena N.: A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell, 23, 3812–3823 (2011)

13. Kapulnik Y., Koltai H.: Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiol. 166, 560–569 (2014)

14. Kheyrodin H.: Plant and Soil Relationship between Fungi. IJRSB. 2, 42–49 (2014)

15. Luginbuehl L., Oldroyd G.E.D.: Calcium signaling and transcriptional regulation in arbuscular mycorrhizal symbiosis (w) Molecular mycorrhizal symbiosis, red. F. Martin, John Wiley & Sons, Hoboken, New Jersey, 2016, s. 125–140

16. Madsen E.B., Stougaard J.: Receptor Kinases Mediating Early Symbiotic Signalling (w) Receptor-like kinases in plants, red.
F. Tax., B. Kemmerling, Springer-Verlag, Berlin Heidelberg, 2012, s. 93–107

17. Miller J.B., Pratap A., Miyahara A., Zhou L., Bornemann S., Morris R.J., Oldroyd G.E.D.: Calcium/calmodulin-depen-
dent protein kinase is negatively and positively regulated by calcium, providing a mechanism for decoding calcium responses during symbiosis signaling. The Plant Cell, 25, 5053–5066 (2013)

18. Miyata K., Nakagawa T. i wsp.: The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol. 55, 1864–1872 (2014)

19. Mohanta T.K., Bae H.: Functional genomics and signaling events in mycorrhizal symbiosis. J. Plant Interact. 10, 21–40 (2015)

20. Nakagawa T., Imaizumi-Anraku H.: Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity. Rice (NY), 8, doi 10.1186/s12284-015-0067-0 (2015)

21. Oehl F., Da Silva G.A., Goto B.T., Maia L.C., Sieverding E.: Glomeromycota: two new classes and a new order. Mycotaxon, 116, 365–379 (2011)

22. Olsson P.A., van Aarle I.M., Gavito M.E., Bengtson P., Bengtsson G.: 13C Incorporation into signature fatty acids as an assay for carbon allocation in arbuscular mycorrhiza. Appl. Environ. Microbiol. 71, 2592–2599 (2005)

23. Parniske M.: Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Microbiology, 6, 763–775 (2008)

24. Patreze C.M., Moreira M., Tsai S.M.: Advances in molecular diversity of arbuscular mycorrhizal fungi (phylum Glomeromycota) in forest ecosystems (w) Forest ecosystem – more than just trees, red. J.A. Blanco, Y.H. Lo, InTech, Rijeka, 2012, s. 53–80

25. Pawlowski M.L, Hartman G.L: Infection mechanisms and colonization patterns of fungi associated with soybean (w) Fungal pathogenicity, red. S. Sultan, InTech, Rijeka, 2016, s. 25–43

26. Ramos A.C., Okorokova-Façanha A.L. i wsp.: An outlook on ion signaling and ionome of mycorrhizal symbiosis. Braz. J. Plant Physiol. 23, 79–89 (2011)

27. Schüßler A., Walker C.: The Glomeromycota: a species list with new families and new genera. Gloucester, UK, 2010

28. Schüßler A., Walker Ch.: Evolution of the ‘Plant-Symbiotic’ fungal phylum (w) Evolution of fungi and fungal-like organisms, red. S. Pöggeler, J. Wöstemeyer, Springer-Verlag, Berlin Heidelberg, 2011, s. 163–185

29. Seto Y., Kameoka H., Yamaguchi S., Kyozuka J.: Recent advances in strigolactone research: chemical and biological aspects. Plant Cell Physiol. 53, 1843–1853 (2012)

30. Smith A.M., Coupland G., Dolan L., Harberd N., Jones J., Martin C., Sablowski R., Amey A.: Plant biology. Garland Science, New York, 2009

31. Smith S.E., Read D.J.: Mycorrhizal symbiosis. Academic Press, New York, 2008

32. Smith S.M.: What are strigolactones and why are they important to plants and soil microbes? BMC Biol. 12, doi 10.1186/1741-7007-12-19 (2014)

33. Sun J., Oldroyd G.E.D. i wsp.: Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell, 27, 823–838 (2015)

34. Tahad M.M., Sijam K.: Mycorrhizal fungi and abiotic environmental conditions relationship. Res. J. Environ. Sci. 6, 125–133 (2012)

35. Van der Heijden M.G.A., Martin F.M., Selosse M.A., Sanders I.R.: Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015)

36. Van Ness L.K., Jayaraman D., Maeda J., Barrett-Wilt G.A., Sussman M.R., Ané J.M.: Mass spectrometric-based selected reaction monitoring of protein phosphorylation during symbiotic signaling in the model legume, Medicago truncatula. PLoS ONE, 11, e0155460 (2016)

37. Venkateshwaran M., Ané J.M. i wsp.: A role for the mevalonate pathway in early plant symbiotic signaling. Proc. Natl. Acad. Sci. USA, 112, 9781–9786 (2015)

38. Zwanenburg B., Pospíšil T., Ćavar Zeljkovic S.: Strigolactones: new plant hormones in action. Planta, 243, 1311–1326 (2016)

EXTRA FILES

COMMENTS