NITROAROMATIC COMPOUNDS – CHARACTERISTICS AND METHODS OF BIODEGRADATION

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

31
Reader(s)
67
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 56 , ISSUE 3 (April 2017) > List of articles

NITROAROMATIC COMPOUNDS – CHARACTERISTICS AND METHODS OF BIODEGRADATION

Alicja Wysocka / Agata Olszyna / Iga Komorowska / Magdalena Popowska *

Keywords : aromatic nitrocompounds, the natural environment, microorganisms, biodegradation, bioremediation

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 56, Issue 3, Pages 289-305, DOI: https://doi.org/10.21307/PM-2017.56.3.289

License : (CC BY-NC-ND 4.0)

Published Online: 22-May-2019

ARTICLE

ABSTRACT

Nitroaromatic compounds are present in the environment mainly as industry products. They pose a serious risk to our health (often exhibiting strong mutagenic and carcinogenic effect) as well as to the environment. Most of the nitroaromatic compounds are stable due to considerable resistance to degradation and they persist in the environment for a long time. In this review, we present the current state of knowledge concerning biodegradation of nitroaromatic compounds. In the first part, general information regarding their proprieties, synthesis and sources as well as pathways of microbial aerobic or anaerobic degradation are described. In some cases microorganisms have evolved several pathways of degradation specific nitrocompound, for instance nitrobenzene, which we describe in detail. The second part of the publication focuses on environmental bioremediation of nitrocompounds.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Aiub C.A.F., Mazzei J.L., Pinto L.F.R., Felzenszwalb I.: Evaluation of nitroreductase and acetyltransferase participation in n-nitrosodiethylamine genotoxicity. Chem. Biol. Interact. 161, 146–154 (2006)

2. Alexander M.: Bioremediation and biodegradation. J. Environ. Qual. 32, 1126–1133 (1999)

3. Ang E.L., Zhao H., Obbard J.P.: Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme Microb. Technol. 37, 487–496 (2005)

4. Angermaier L., Simon H.:On nitroaryl reductase activities in several Clostridia. Biol. Chem. 364, 1653–1664 (1983).

5. Arora P.K., Srivastava A., Singh V.P.: Degradation of 4-chloro-3-nitrophenol via a novel intermediate, 4-chlororesorcinol by Pseudomonas sp. JHN. Sci. Rep. 4, DOI: 10.1038/srep04475 (2014)

6. Baj J., Markiewicz Z.: Biologia molekularna bakterii. PWN, Warszawa, 2006

7. Backhaus T., Froehner K., Altenburger R., Grimme L.H.: Toxicity testing with Vibrio fishcheri: a comparison between the long term (24 h) and the short term (30 min) bioassay. Cheraospher, 35, 2925–2938 (1997)

8. BACTrem Sp. z o.o., http://www.bactrem.pl/ (29-12-2016)

9. Bhattacharya A., Purohit V.C., Suarez V., Tichkule R., Parmer G., Rinaldi F.: One-step reductive amidation of nitro arenes: application in the synthesis of acetaminophen tm. Tetrahedron Lett. 47, 1861–1864 (2006)

10. Bojanowska I.: Bioremediacja metali ciężkich i innych zanieczyszczeń z gleby. Materiały Wykładowe – Zakład Inżynierii Środowiska Wydziału Chemicznego Uniwersytetu Gdańskiego, www.parasit.ump.edu.pl/seminars/1WL-2/W-3.pdf (04-03-2017)

11. Booth G.: Nitro Compounds, Aromatic (w) Ullmann’s Encyclopedia of Industrial Chemistry, red. G. Booth, John Wiley
& Sons, New York, 2007, s. 302–349

12. Błaszczyk M.K.: Mikroorganizmy w ochronie środowiska. PWN, Warszawa, 2007

13. Bruns-Nagel D., Knicker H., Drzyzga O., Butehorn U., Stein-bach K., Gemsa D., Low E.: Characterization of 15 n-TNT residues after an anaerobic/aerobic treatment of soil/molasses mixtures by solid-state 15n nmr spectroscopy .2 .systematic investigation of whole soil and different humic fractions. Environ. Sci. Technol. 34, 1549–1556 (2000)

14. Bugg T.D.H.: Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron. 59, 7075–7101 (2003)

15. Calza P., Massolino C., Pelizzetti E., Minero C.: Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater. Sci. Total Environ. 398, 196–202 (2008)

16. de Carvalho C.C.: Adaptation of Rhodococcus to organic solvents (w) Biology of Rhodococcus, red. H.M. Alvarez, Springer, Berlin Heidelberg, 2010, s. 109–131

17. Cho C.M., Mulchandani A., Chen W.: Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl. Environ. Microbiol. 68, 2026–2030 (2002)

18. Coates J.D., Anderson R.T.: Emerging techniques for anaerobic bioremediation of contaminated environments. Trends Biotechnol. 18, 408–412 (2000)

19. Corbett M.D., Corbett B.R.: Bioorganic chemistry of the arylhydroxylamine and nitrosoarene functional groups (w) Bio-
degradation of nitroaromatic compounds, red. J.C. Spain, Springer US., New York, 1995, s. 151–182

20. Crocker F., Blakeney G., Jung C.: Complete degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a co-culture of Gordonia sp. KTR9 and Methylobacterium sp. JS178. Remediation, DOI: 10.1002/rem.21457 51 (2016)

21. Dziennik Urzędowy Unii Europejskiej 31.05.2008.Komunikat Komisji w sprawie wyników analizy ryzyka i strategii ograniczania ryzyka stwarzanego przez następujące substancje: 2-nitrotoluen i 2,4-dinitrotoluen (2008/C 134/02).

22. Edwards S.J., Kjellerup B.V.: Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl. Microbiol. Biotechnol. 97, 9909–9921 (2013)

23. Environmental Protection Agency’s Integrated Risk Information System (IRIS): https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@na+@rel+Trinitrotoluene (04-03-2017)

24. Environmental Protection Agency: Attachment G -list of priority pollutants. www.waterboards.ca.gov/rwqcb7/board_decisions/adopted_orders/order/2005/05_0082g.pdf+&cd=1&hl=pl&ct=clnk&gl=pl&client=firefox-b-ab, (26-12-2016)

25. Esteve-Núñez A., Caballero A., Ramos J.L.: Biological degradation of 2, 4, 6-trinitrotoluene. Microbiol. Mol. Biol. Rev. 65, 335–352 (2001)

26. Esteve-Núñez A., Lucchesi G., Philipp B., Schink B., Ramos J.L.: Respiration of 2,4,6-trinitrotoluene by Pseudomonas sp. strain JLR11. J. Bacteriol. 182, 1352–1355 (2000)

27. Esteve- Núñez A., Ramos J.L.: Metabolism of 2,4,6-trinitrotoluene by Pseudomonas sp. JLR11. J. Bacteriol. 32, 3802–3808 (1998)

28. European Union Risk Assessment Report: Nitrobenzene (2007): http://ecb.jrc.ec.europa.eu/documents/existing-chemicals/risk_assessment/report/nitrobenzenereport305.pdf (05-03-2017)

29. Eyer P.: Reactions of nitrosobenzene with reduced glutathione. Chemico-biological interactions, 24, 227–239 (1979)

30. Fuller M.E., Manning J.E.J.: Evidence for differential effects of 2,4,6-trinitrotoluene and other munitions compounds on specific subpopulations of soil microbial communities. Environ. Toxicol. Chem. 17, 2185–2195 (1998)

31. Fuller M.E., Manning J.F.: Aerobic gram-positive and gram-negative bacteria exhibit differential sensitivity to and transformation of 2,4,6- trinitrotoluene (TNT). Curr. Microbiol. 35, 77–83 (1997)

32. Funk S.B., Roberts D.J., Crawford D.L., Crawford R.L.: Initial-phase optimization for bioremediation of munition compound- contaminated soils. Appl. Environ. Microbiol. 59, 2171–2177 (1993)

33. Gellert G.: Sensitivity and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence. Ecotoxicol. Environ. Saf. 45, 87–91 (2000)

34. Global security: Explosives – Nitroaromatics (TNT [2,4,6-trinitrotoluene]). www.globalsecurity.org (20-12-2016)

35. Gorontzy T., Kuver J., Blotevogel K.-H.: Microbial transformation of nitroaromatic compounds under anaerobic conditions. J. Gen. Microbiol. 139, 1331–1336 (1993)

36. Guzik U., Wojcieszyńska D., Hupert-Kocurek K.: Mikrobiologiczny rozkład związków aromatycznych w warunkach anoksji. Post. Mikrobiol. 49, 217–226 (2010)

37. Guzik U., Wojcieszyńska D., Krysiak M., Śląski U., Biochemii K., Kaczorek K.E.: Mikrobiologiczny rozkład alkanów ropopochodnych wprowadzenie. NAFTA-GAZ, 66, 1019–1027 (2010)

38. Guzik U.: Charakterystyka biochemiczna i genetyczna enzymów z grupy dioksygenaz, uczestniczących w rozkładzie związków aromatycznych, u wybranych szczepów bakterii. Rozprawa doktorska, Wydział Biologii i Ochrony Środowiska, Uniwersytet Śląski, Katowice, 2007

39. Haghighi-Podeh M.R., Bhattacharya S.K.: Fate and toxic effects of nitrophenols on anaerobic treatment systems. Water Sci. Technol, 34, 345–350 (1996)

40. Hanstein W.G., Hatefi Y.: Trinitrophenol: a membrane-impermeable uncoupler of oxidative phosphorylation. Proc. Natl. Acad. Sci. USA, 71, 288–92 (1974)

41. Hatzinger P. B., Kelsey J. W. R: Biodegradation (w) Encyclopedia of Soils in the Environment, red. D. Hillel, Elsevier, New York, 2005, s. 250–258

42. Hepworth J.D., Waring D.R., Waring M.J.: Chemia związków aromatycznych. PWN, Warszawa, 2009

43. Hess T., Schmidt S., Silversstein J., Howe B.: Supplemental substrate enhancement of 2,4-dinitrophenol mineralization by a bacterial consortium. Appl. Environ. Microbiol. 56, 1551–1558 (1990)

44. Islam M.N., Shin M.S., Jo Y.T., Park J.H.: TNT and RDX degradation and extraction from contaminated soil using subcritical water. Chemosphere, 119, 1148–1152 (2015)

45. Johnson G.R., Spain J.C.: Evolution of catabolic pathways for synthetic compounds: bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene. Appl. Microbiol. Biotechnol. 62, 110–123 (2003)

46. Ju K.S., Parales R.E.: Nitroaromatic compounds, from synthesis to biodegradation. Microbiol. Mol. Biol. Rev. 74, 250–72 (2010)

47. Kadiyala V., Nadeau L.J.: Construction of Escherichia coli strains for conversion of nitroacetophenones to ortho-aminophenols. Appl. Environ. Microbiol. 69, 6520–6526 (2003)

48. Kanekar P., Dautpure P., Sarnaik S.: Biodegradation of nitro-explosives. Indian J. Exp. Biol. 41, 991–1001 (2003)

49. Kao C., Lin B., Chen S., Wei S., Yao C., Chien C.: Biodegradation of trinitrotoluene (TNT) by indigenous microorganisms from TNT- contaminated soil, and their application in TNT bioremediation. Bioremediation J. 9868, 1547–6529 (2016)

50. Karlová P., Gelbíčová T., Sedláček I.: Substrate interactions between 4-nitrophenol and 4-nitrotoluene during biodegradation of their mixture. Desalin. Water Treat. 57, 2759–2765 (2016)

51. Karta charakterystyki niebezpiecznej substancji – 4-nitroanilina, zgodnie z Roz. MZ z dnia 03.07.2002 r., PN-ISO 11014-1 i Dyrektywą 91/155/EEC 304 ALICJA WYSOCKA,

52. Karta charakterystyki niebezpiecznej substancji – dinitrotoluen, 22 grudnia 2008 r. Na podstawie zał. II do Roz.WE 1907/2006 Parlamentu Europejskiego i Rady z dnia 18 grudnia 2006 r.

53. Karta charakterystyki niebezpiecznej substancji – nitrobenzen, zgodnie z Roz. MZ z dnia 03.07.2002 r., PN-ISO 11014-1 i Dyrektywą 91/155/EEC

54. Karta charakterystyki niebezpiecznej substancji MERC – 2,4-dini-trofenol, zgodnie z Roz. WE 1907/2006

55. Karta charakterystyki niebezpiecznej substancji MERC – 2-nitro-fenol, zgodnie z Roz. WE 1907/2006

56. Kinouchi T., Yoshinari O.: Purification and characterization of 1-nitropyrene nitroreductases from Bacteroidesfragilis. Appl. Environ. Microbiol. 46, 596–604 (1983)

57. Klausmeier R.E., Osmon J.L., Walls D.R.: The effect of trinitrotoluene on microorganisms. Dev. Ind. Microbiol. 15, 309–317 (1973)

58. Kołwzan B., Adamiak W., Grabas K., Pawełczyk A.: Podstawy mikrobiologii w ochronie środowiska. Oficyna wydawnicza Politechniki Wrocławskiej, Wrocław, 2005

59. Krygowski T.M.i wsp.: Chemia – encyklopedia szkolna. WSiP, Warszawa, 2001

60. Kulkarni M., Chaudhari A.: Microbial remediation of nitro-aromatic compounds: an overview. J. Environ. Manage. 85, 496–512 (2007)

61. Kundu D., Hazra C., Chaudhari A.: Bioremediation potential of Rhodococcus pyridinivorans NT2 in nitrotoluenes contaminated soils: The effectiveness of natural attenuation, biostimulation and bioaugmentation approaches. Soil Sediment Contam. DOI: 10.1080/15320383.2016.1190313 (2016)

62. Lague D.: China blames oil firm for chemical spill. The New York Times, http://www.nytimes.com/2005/11/24/world/asia/24iht-harbin.html (29-12-2016)

63. Lang M., Spiteller P., Hellwig V., Steglich W.: Stephanosporin, a “traceless” precursor of 2-chloro-4-nitrophenol in the Gasteromycete Stephanospora caroticolor. Angew. Chemie – Int. Ed. 40, 1704–1705 (2001)

64. Lewis T.A., Newcombe D.A., Crawford R.L.: Bioremediation of soils contaminated with explosives. J. Environ. Manage. 70, 291–307 (2004)

65. Lin H., Chen X., Ding H., Jia X., Zhao Y.: Isolation and characterization of Rhodococcus sp.NB5 capable of degrading a high concentration of nitrobenzene. J. Basic Microbiol. 51, 397–403 (2011)

66. Liu N., Ding F., Wang L., Liu P., Yu X., Ye K.: Coupling of bio-prb and enclosed in-well aeration system for remediation of nitrobenzene and aniline in groundwater. Env. Sci Pollut Res. DOI: 10.1007/s11356-016-6206-3 (2016)

67. Maples K.R., Eyer P., Manson R.P.: Aniline-, phenyihydroxylamine-, and hemoglobin thiyl free radical formation in vivo and in vitro. Mol. Pharmacol. 37, 311–318 (1989)

68. Mason R.P., Holtzman J.L.: The role of catalytic superoxide formation in the o2 inhibition of nitroreductase. Biochem. Biophys. Res. Commun. 67, 1267–1274 (1975)

69. McCormick N.G., Feeherry F.E., Levinson H.S.: Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 31, 949–958 (1976)

70. McMurry J.: Chemia organiczna. Tom 3. PWN, Warszawa, 2013

71. Nielsen L.E., Nielsen L.E., Nickerson K.W., Nickerson K.W.: Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in. Microbiology, 71, 5171–5176 (2005)

72. Nishino N., Atkinson R., Arey J.: Formation of nitro products from the gas-phase oh radical-initiated reactions of toluene, naphthalene, and biphenyl: effect of NO2 concentration. Environ. Sci. Technol. 42, 9203–9209 (2008)

73. Nishino S.F., Paoli G.C.: Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2, 6-dinitrotoluene. Appl. Environ. Microbiol. 66, 2139–2147 (2000)

74. Nishino S.F., Spain J.C.: Oxidative pathway for the biodegradation of nitrobenzene by Comamonas sp. strain JS765. Appl. Environ. Microbiol. 61, 2308–2313 (1995)

75. Otto K., Hofstetter K., Röthlisberger M., Witholt B., Schmid A.: Biochemical characterization of styab from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J. Bacteriol. 186, 5292–5302 (2004)

76. Oves M., Saghir Khan M., Huda Qari A., Nadeen Felemban M., Almeelbi T.: Heavy Metals: Biological Importance and Detoxification Strategies. J. Bioremediat. Biodegrad. 7, DOI: 10.4172/2155-6199.1000334 (2016)

77. Pacheco A.de O., Kagohara E., Andrade L.H., Comasseto J.V., Crusius I.H.S., Paula C.R., Porto A.L.M.: Biotransformations of nitro-aromatic compounds to amines and acetamides by tuberous roots of Arracacia xanthorrhiza and Beta vulgaris and associated microorganism (candida guilliermondii). Enzyme Microb. Technol. 42, 65–69 (2007)

78. Paracetamol – informacja od wytwórcy: http://web.archive.org/web/20130407031450/http://www.pharmweb.net/pwmirror/pwy/paracetamol/pharmwebpicg.html (04-03-2017)

79. Peres C.M., Agathos S.N.: Biodegradation of nitroaromatic pollutants: from pathways to remediation. Biotechnol. Annu. Rev. 6, 197–220 (2000)

80. Peterson J., Mason P., Hovsepian J., Holtzman J.: Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat microsomes. J. Biol. Chem. 254, 4009–4014 (1979)

81. Qureshi A., Purohit H.: Isolation of bacterial consortia for degradation of p- nitrophenol from agricultural soil. Ann. Appl. Biol. 140, 159–162 (2002)

82. Radi R.: Nitric oxide, oxidants, and protein tyrosine nitration. PNAS, 101, 4003–4008 (2003)

83. Ramos J.L., González-Pérez M.M., Caballero A., Dillewijn P. Van: Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr. Opin. Biotechnol. 16, 275–281 (2005)

84. Razo-Flores E., Donlon B., Lettinga G., Field J.A.: Biotransformation and biodegradation of n-substituted aromatics in methanogenic granular sludge. FEMS Microbiol. Rev. 20, 525–538 (1997)

85. Rieger P.G., Knackmuss H.J.: Basic knowledge and perspectives on biodegradation of 2, 4, 6-trinitrotoluene and related nitroaromatic compounds in contaminated soil (w) Biodegradation of nitroaromatic compounds. red. J.C. Spain, Springer US, New York, 1995, s. 1–18

86. Roldán M.D., Pérez-Reinado E., Castillo F., Moreno-Vivián C.: Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol. Rev. DOI:10.1111/j.1574-6976.2008.00107.x (2008)

87. Sax I.R., Lewis R.J.: Nitro-compounds of aromatic hydrocarbons. Dangerous properties of industrial material, 2, 2534–2536 (1999)

88. Schrader P.S., Hess T.F.: Bioremediation and biodegradation coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene (TNT) in soil slurry. J. Environ. Qual. 33, 1202–1209 (2004)

89. Shao P., Yuan X., Liu R., Cao J.P.: Effects of nitrobenzene on liver antioxidant defense system of Carassius auratus. Chem. Res. Chinese Univ. 26, 204–209 (2010)

90. Sheu Y.T., Lien P.J., Chen C.C., Chang Y.M., Kao C.M.: Bioremediation of 2,4,6-trinitrotoluene-contaminated groundwater using unique bacterial strains: microcosm and mechanism studies. Int. J. Environ. Sci. Technol. 13, 1357–1366 (2016)

91. Siciliano S.D., et al.: Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol. 67, DOI: 10.1128/AEM.67.6.2469-2475.2001 (2001)

92. Smitha M.S., Singh R., Liu H.-J.: Novel bacillus consortium for degradation of 2,4-dinitrotoluene: a xenobiotic compound. Br. Microbiol. Res. J. 15, 1–10 (2016)

93. Snellinx Z., Taghavi S., Vangronsveld J., LelieD.Van Der: Microbial consortia that degrade 2, 4-DNT by interspecies metabolism: isolation and characterisation. Biodegradation, 14, 19–29 (2003)

94. Somerville C.C., Nishino S.F., Spain J.C.: Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol. 177, 3837–3842 (1995)

95. Spain J.C., Hughes J.B., Knackmuss H.J.: Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, 2000

96. Spain J.C.: Bacterial degradation of nitroaromatic compounds under aerobic conditions (w) Biodegradation of Nitroaromatic Compounds, red. J.C. Spain , Springer Science+Business Media, New York, 1995, s. 19–35

97. Spain J.C.: Biodegradation of nitroaromatic compounds. Annual Rev. Microbiol. 49, 523–555 (1995)

98. Spain J.C., Gibson D.T.: Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl. Environ. Microbiol. 57, 812–819 (1991)

99. Suen W.C., Haigler B.E., Spain J.C.: 2,4-dinitrotoluene dioxygenase from Burkholderia sp. strain DNT: similarity to naphthalene dioxygenase. J. Bacteriol. 178, 4926–4934 (1996)

100. Talmage S.S., Opresko D.M., Maxwell C.J., Welsh C., Cretella F.M., Reno P.H., Daniel F.B.: Nitroaromatic munition compounds: environmental effects and screening values. Re. Environ. Contam. Toxicol. 161, 1–156 (1999)

101. Travis E.R., Hannink N.K., Van Der Gast C.J., Thompson I.P., Rosser S.J., Bruce N.C.: Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. Environ. Sci. Technol. 41, 5854–5861 (2007)

102. Travis A.S.: Manufacture and uses of the anilines: a vast array of processes and products. Chemistry of Functional Groups. DOI: 10.1002/9780470682531.pat0395 (2007)

103. Tyagi M., da Fonseca M.M.R., de Carvalho C.C.C.R.: Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22, 231–241 (2011)

104. Unell M., Kabelitz N., Jansson J.K., Heipieper H.J.: Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol. Lett. 266, 138–143 (2007)

105. Vaillancourt E.H., Bolin J.T., Eltis L.D.: The ins and outs of ring-cleaving dioxygenases. Crit. Rev. Biochem. Mol. Biol. 41, 241–267 (2006)

106. Vorbeck C., Lenke H., Fischer P., Knackmuss H.J.: Identification of a hydride-meisenheimer complex as a metabolite of 2,4,6- trinitrotoluene by a mycobacterium strain. J. Bacteriol. 176, 932–934, 1994

107. Wakefield J.C.: Nitrobenzene toxicological overview. Health Protection Agency, https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/338243/hpa_nitrobenzene_toxicological_overview_v1.pdf (20-12-2016)

108. World Health Organization: Nitrobenzene. Environmental health criteria 230. http://www.inchem.org/documents/ehc/ehc/ehc230.htm (19.12.2016)

109. Widrig D.L., Boopathy R., Manning J.F.: Bioremediation of TNT-contaminated soil: a laboratory study. Environ. Toxicol. Chem. 16, 1141–1148 (1997)

110. Winkler R., Hertweck C.: Biosynthesis of nitro compounds., Chem. BioChem. 8, 973 – 977 (2007)

111. Williamson K.L.: Macroscale and microscale organic experiments. Houghton-Mifflin, Boston, 2002

112. World Health Organization: International Programme on Chemical Safety, http://www.inchem.org/pages/ehc.html (04-03-2017)

113. Wójcik P., Tomaszewska B.: Biotechnologia w remediacji zanieczyszczeń organicznych. Biotechnologia, 4, 156–172 (2005)

114. Wu Z., Liu Y., Liu H., Xia Y., Shen W., Hong Q., Li S., Yao H.: Characterization of the nitrobenzene-degrading strain Pseudomonas sp.A3 and use of its immobilized cells in the treatment of mixed aromatics wastewater. World J. Microbiol. Biotechnol. 28, 2679–2687 (2012)

115. Zeyer J., Kocher H.P., Timmis K.N.: Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Appl. Environ. Microbiol. 52, 334–339 (1986)

116. Ziegenfuss P.S., Williams R.T., Weston R.F., Chester W., Myler C.A.: Hazardous materials compostion. J. Hazard. Mater. 28, 91–99 (1991)

EXTRA FILES

COMMENTS