SECRETION OF OUTER MEMBRANE VESICLES AS A MECHANISM PROMOTING H. PYLORI INFECTIONS

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

0
Reader(s)
0
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 56 , ISSUE 3 (April 2017) > List of articles

SECRETION OF OUTER MEMBRANE VESICLES AS A MECHANISM PROMOTING H. PYLORI INFECTIONS

Paweł Krzyżek *

Keywords : biofilm, H. pylori, outer membrane vesicles, transformation, virulence factors

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 56, Issue 3, Pages 316-325, DOI: https://doi.org/10.21307/PM-2017.56.3.316

License : (CC BY-NC-ND 4.0)

Published Online: 22-May-2019

ARTICLE

ABSTRACT

Helicobacter pylori commonly colonizes the human gastric mucosa. Infections with this microorganism can contribute to serious health consequences, such as peptic ulceration, gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue lymphoma. Chronic persistence of this bacteria in the host organism is probably strongly dependent on the secretion of outer membrane vesicles (OMV). These organelles are small, electron-dense, extracellular structures which are secreted in large amounts during stressful conditions, among others. H. pylori OMV mediate transfer of virulence factors such as toxins and immunomodulatory compounds. They contribute to avoiding a response from the host immune system and inducing chronic gastritis. OMV secretion also affects the formation of cell aggregates, microcolonies and biofilm matrix. Enhanced OMV production is connected to maintenance of direct contact through cell-cell and cell-surface interactions. A key component of OMV, which determines their structural function, is extracellular DNA (eDNA) anchored to the surface of these organelles. eDNA associated with OMV additionally determines the genetic recombination in the process of horizontal gene transfer. H. pylori is naturally competent for genetic transformation and is constantly capable of DNA uptake from the environment. The natural competence state promotes the assimilation of eDNA anchored to the OMV surface. This is probably dependent on ComB and ComEC components, which are involved in the transformation process. For this reason, the OMV secretion mediates intensive exchange of genetic material, promotes adaptation to changing environmental conditions and enables persistent infecting of the gastric mucosa by H. pylori.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Anderson J.K., Huang J.Y., Wreden C., Sweeney E.G., Goers J., Remington S.J., Guillemin K.: Chemorepulsion from the quorum signal autoinducer-2 promotes Helicobacter pylori biofilm dispersal. mBio, 6, e00379–15 (2015)

2. Barnes A.M., Ballering K.S., Leibman R.S., Wells C.L., Dunny G.M.: Enterococcus faecalis produces abundant extracellular structures containing DNA in the absence of cell lysis during early biofilm formation. MBio, 3, e00193–12 (2012)

3. Baur B., Hanselmann K., Schlimme W., Jenni B.: Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl. Environ. Microbiol. 62, 3673–3678 (1996)

4. Biernat M., Gościniak G.: The pathogenesis of Helicobacter pylori infection – the significance of selected virulence factors. Forum zakaż. 2, 7–16 (2011)

5. Brown H.L., Hanman K., Reuter M., Betts R.P., van Vliet A.H.M.: Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment. Front. Microbiol. 6, 699 (2015)

6. Bumann D., Aksu S., Wendland M., Janek K., Zimny-Arndt U., Sabarth N., Meyer T.F., Jungblut P.R.: Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. Infect. Immun. 70, 3396–3403 (2002)

7. Cellini L., Grande R., Di Campli E., Di Bartolomeo S., Capodicasa S., Marzio L.: Analysis of genetic variability, antimicrobial susceptibility and virulence markers in Helicobacter pylori identified in Central Italy. Scand. J. Gastroenterol. 41, 280–287 (2006)

8. Cellini L., Grande R., Di Campli E., Di Bartolomeo S., Di Giulio M., Traini T., Trubiani O.: Characterization of an Helicobacter pylori environmental strain. J. Appl. Microbiol. 105, 761–769 (2008)

9. Chitcholtan K., Hampton M.B., Keenan J.I.: Outer membrane vesicles enhance the carcinogenic potential of Helicobacter pylori. Carcinogenesis, 29, 2400–2405 (2008)

10. Ciofu O., Beveridge T.J., Kadurugamuwa J., Walther-Rasmussen J., Høiby N.: Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45, 9–13 (2000)

11. Dorer M.S., Cohen I.E., Sessler T.H., Fero J., Salama N.R.: Natural competence promotes Helicobacter pylori chronic infection. Infect. Immun. 81, 209–215 (2013)

12. Dorward D.W., Garon C.F., Judd R.C.: Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J. Bacteriol. 171, 2499–2505 (1989)

13. Flemming C.-H., Wingender J.: The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010)

14. Fulsundar S., Harms K., Flaten G.E., Johnsen P.J., Chopade B., Nielsen K.M.: Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl. Environ. Microbiol. 80, 3469–3483 (2014)

15. Gloag E.S., Whitchurch C.B. i wsp.: Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc. Natl. Acad. Sci. USA, 110, 11541–11546 (2013)

16. Gościniak G., Biernat M., Bińkowska A., Kus A., Iwańczak B.: Frequency of infection with Helicobacter pylori isolates of different antimicrobial profiles in children and adolescents. A preliminary study. Adv. Clin. Exp. Med. 26, 263–268 (2017)

17. Grande R., Di Campli E., Di Bartolomeo S., Verginelli F., Di Giulio M., Baffoni M., Bessa L.J., Cellini L.: Helicobacter pylori biofilm: a protective environment for bacterial recombination. J. Appl. Microbiol. 113, 669–676 (2012)

18. Grande R., Di Giulio M., Bessa L.J., Di Campli E., Baffoni M., Guarnieri S., Cellini L.: Extracellular DNA in Helicobacter pylori biofilm: a backstairs rumour. J. Appl. Microbiol. 110, 490–498 (2011)

19. Grande R., Mincione G. i wsp.: Helicobacter pylori ATCC 43629/NCTC 11639 outer membrane vesicles (OMVs) from biofilm and planktonic phase associated with extracellular DNA (eDNA). Front. Microbiol. 6, 1369 (2015)

20. Hall-Stoodley L., Costerton J.W., Stoodley P.: Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004)

21. Hall-Stoodley L., Stoodley P.: Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol. 13, 7–10 (2005)

22. Haurat M.F., Aduse-Opoku J., Rangarajan M., Dorobantu L., Gray M.R., Curtis M.A., Feldman M.F.: Selective sorting of cargo proteins into bacterial membrane vesicles. J. Biol. Chem. 286, 1269–1276 (2011)

23. Horstman A.L., Kuehn M.J: Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J. Biol. Chem. 277, 32538–32545 (2002)

24. Ismail S., Hampton M.B., Keenan J.I.: Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells. Infect. Immun. 71, 5670–5675 (2003)

25. Kahn M.E., Barany F., Smith H.O.: Transformasomes: specialized membranous structures that protect DNA during Haemophilus transformation. Proc. Natl. Acad. Sci. USA, 80, 6927–6931 (1983)

26. Kamaguchi A., Nakayama K., Ichiyama S., Nakamura R., Watanabe T., Ohta M., Baba H., Ohyama T.: Effect of Porphyromonas gingivalis vesicles on coaggregation of Staphylococcus aureus to oral microorganisms. Curr. Microbiol. 47, 485–491 (2003)

27. Kaparakis M., Ferrero R.L. i wsp.: Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol. 12, 372–385 (2010)

28. Karnholz A., Hoefler C., Odenbreit S., Fischer W., Hofreuter D., Haas R.: Functional and topological characterization of novel components of the comB DNA transformation competence system in Helicobacter pylori. J. Bacteriol. 188, 882–893 (2006)

29. Karnholz A., Hoefler C., Odenbreit S., Fischer W., Hofreuter D., Haas R.: Functional and topological characterization of novel components of the comB DNA transformation competence system in Helicobacter pylori. J. Bacteriol. 188, 882–893 (2006)

30. Kato S., Kowashi Y., Demuth D.R.: Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb. Pathog. 32, 1–13 (2002)

31. Keenan J., Day T., Neal S., Cook B., Perez-Perez G., Allardyce R., Bagshaw P.: A role for the bacterial outer membrane in the pathogenesis of Helicobacter pylori infection. FEMS Microbiol. Lett. 182, 259–264 (2000)

32. Keenan J.I., Davis K.A., Beaugie C.R., McGovern J.J., Moran A.P.: Alterations in Helicobacter pylori outer membrane and outer membrane vesicle-associated lipopolysaccharides under iron-limiting growth conditions. Innate Immun. 14, 279–290 (2008)

33. Kennemann L., Suerbaum S. i wsp.: Helicobacter pylori genome evolution during human infection. Proc. Natl. Acad. Sci. USA, 108, 5033–5038 (2011)

34. Kesty N.C., Mason K.M., Reedy M., Miller S.E., Kuehn M.J.: Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J. 23, 4538–4549 (2004)

35. Kouzel N., Oldewurtel E.R., Maier B.: Gene transfer efficiency in gonococcal biofilms: role of biofilm age, architecture, and pilin antigenic variation. J. Bacteriol. 197, 2422–2431 (2015)

36. Kuehn M.J., Kesty N.C.: Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19, 2645–2655 (2005)

37. Kulkarni H.M., Jagannadham M.V.: Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology, 160, 2109–2121 (2014)

38. Kung S.H., Almeida R.P.: Biological and genetic factors regulating natural competence in a bacterial plant pathogen. Microbiology, 160, 37–46 (2014)

39. Li Y.H., Lau P.C., Lee J.H., Ellen R.P., Cvitkovitch D.G.: Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183, 897–908 (2001)

40. Lin E.A., Zhang X.-S., Levine S.M., Gill S.R., Falush D., Blaser M.J.: Natural transformation of Helicobacter pylori involves the integration of short DNA fragments interrupted by gaps of variable size. PLoS Pathog. 5, e1000337 (2009)

41. Madsen J.S., Burmølle M., Hansen L.H., Sørensen S.J.: The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 65, 183–195 (2012)

42. Manning A.J., Kuehn M.J.: Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, 258 (2011)

43. Marzio L., Cellini L., Amitrano M., Grande R., Serio M., Cappello G., Grossi L.: Helicobacter pylori isolates from proximal and distal stomach of patients never treated and already treated show genetic variability and discordant antibiotic resistance. Eur. J. Gastroenterol. Hepatol. 23, 467–472 (2011)

44. Mashburn L.M., Whiteley M.: Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature, 437,
422–425 (2005)

45. Moradigaravand D., Engelstädter J.: The impact of natural transformation on adaptation in spatially structured bacterial populations. BMC Evol. Biol. 14, 141 (2014)

46. Mullaney E., Brown P.A., Smith S.M., Botting C.H., Yamaoka Y.Y., Terres A.M., Kelleher D.P., Windle H.J.: Proteomic and functional characterization of the outer membrane vesicles from the gastric pathogen Helicobacter pylori. Proteomics Clin. Appl. 3, 785–796 (2009)

47. O’Donoghue E.J., Krachler A.M.: Mechanisms of outer membrane vesicle entry into host cells. Cell Microbiol. 18, 1508–1517 (2016)

48. Olofsson A., Arnqvist A. i wsp.: Biochemical and functional characterization of Helicobacter pylori vesicles. Mol. Microbiol. 77, 1539–1555 (2010)

49. Olofsson A., Nygård Skalman L., Obi I., Lundmark R., Arnqvist A.: Uptake of Helicobacter pylori vesicles is facilitated by clathrin-dependent and clathrin-independent endocytic pathways. MBio, 5, e00979–14 (2014)

50. Olsen I., Amano A.: Outer membrane vesicles – offensive weapons or good Samaritans? J. Oral. Microbiol. DOI:10.3402/jom.v7.27468 (2015)

51. Palsdottir H., Remis J.P., Schaudinn C., O’Toole E., Lux R., Shi W., McDonald K.L., Costerton J.W., Auer M.: Three-dimensional macromolecular organization of cryofixed Myxococcus xanthus biofilms as revealed by electron microscopic tomography. J. Bacteriol. 191, 2077–2082 (2009)

52. Parker H., Chitcholtan K., Hampton M.B., Keenan J.I.: Uptake of Helicobacter pylori outer membrane vesicles by gastric epithelial cells. Infect. Immun. 78, 5054–5061 (2010)

53. Parker H., Keenan J.I.: Composition and function of Helicobacter pylori outer membrane vesicles. Microbes Infect. 14, 9–16 (2012)

54. Perez Vidakovics M.L.A., Jendholm J., Mörgelin M., Månsson A., Larsson C., Cardell L.-O., Riesbeck K.: B cell activation by outer membrane vesicles-a novel virulence mechanism. PLoS Pathog. 6, e1000724 (2010)

55. Renelli M., Matias V., Lo R.Y., Beveridge T.J.: DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology, 150, 2161–2169 (2004)

56. Rumbo C., Fernández-Moreira E., Merino M., Poza M., Mendez J.A., Soares N.C., Mosquera A., Chaves F., Bou G.: Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob. Agents Chemother. 55, 3084–3090 (2011)

57. Schaar V., Nordström T., Mörgelin M., Riesbeck K.: Moraxella catarrhalis outer membrane vesicles carry β-Lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob. Agents Chemother. 55, 3845–3853 (2011)

58. Schooling S.R., Beveridge T.J.: Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol. 188, 5945–5957 (2006)

59. Sharpe S.W., Kuehn M.J., Mason K.M.: Elicitation of epithelial cell-derived immune effectors by outer membrane vesicles of nontypeable Haemophilus influenzae. Infect. Immun. 79, 4361–4369 (2011)

60. Smalyukh I.I., Butler J., Shrout J.D., Parsek M.R., Wong G.C.: Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78, e030701 (2008)

61. Stingl K., Müller S., Scheidgen-Kleyboldt G., Clausen M., Maier B.:Composite system mediates two-step DNA uptake into Helicobacter pylori. P. Natl. Acad. Sci. USA, 107, 1184–1189 (2010)

62. Vorkapic D., Pressler K., Schild S.: Multifaceted roles of extracellular DNA in bacterial physiology. Curr. Genet. 62, 71–79 (2016)

63. Winter J., Letley D., Rhead J., Atherton J., Robinson K.: Helicobacter pylori membrane vesicles stimulate innate pro- and anti-inflammatory responses and induce apoptosis in Jurkat T cells. Infect. Immun. 82, 1372–1381 (2014)

64. Yaron S., Kolling G.L., Simon L., Matthews K.R.: Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl. Environ. Microbiol. 66, 4414–4420 (2000)

65. Yeh Y.-C., Lin T.-L., Chang K.-C., Wang J.-T.: Characterization of a ComE3 homologue essential for DNA transformation in Helicobacter pylori. Infect. Immun. 71, 5427–5431 (2003)

66. Yonezawa H., Osaki T., Kurata S., Fukuda M., Kawakami H., Ochiai K., Hanawa T., Kamiya S.: Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol. 9, 197–210 (2009)

67. Yonezawa H., Osaki T., Woo T., Kurata S., Zaman C., Hojo F., Hanawa T., Kato S., Kamiya S.: Analysis of outer membrane vesicle protein involved in biofilm formation of Helicobacter pylori. Anaerobe, 17, 388–390 (2011)

EXTRA FILES

COMMENTS