THE APPLICATION OF GENOTYPING AND PHENOTYPING TECHNIQUES FOR EPIDEMIOLOGICAL ANALYSIS OF MICROORGANISMS

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

23
Reader(s)
64
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 56 , ISSUE 3 (April 2017) > List of articles

THE APPLICATION OF GENOTYPING AND PHENOTYPING TECHNIQUES FOR EPIDEMIOLOGICAL ANALYSIS OF MICROORGANISMS

Marcin Brzozowski / Paweł Kwiatkowski / Joanna Jursa-Kulesza * / Danuta Kosik-Bogacka

Keywords : bacterial strain typing, epidemiological surveillance, genotyping methods, phenotyping methods, sequencing

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 56, Issue 3, Pages 353-366, DOI: https://doi.org/10.21307/PM-2017.56.3.353

License : (CC BY-NC-ND 4.0)

ARTICLE

ABSTRACT

The research on similarity between bacteria in outbreak investigations enables the identification of bacterial strain responsible for infections, their source and modes of transmission. These investigations are also necessary for the analysis of spreading of bacteria, not only locally, e.g. in a hospital in a specific country, but also internationally and globally. Therefore, it is of great importance to have the most up to date knowledge regarding different methods used in bacterial typing. This review discusses and compares methods facilitating bacterial typing at a strain level. Phenotyping methods analysed in this article are: Biotyping, Antimicrobial Susceptibility Typing, Phage Typing and protein-based methods. Genotyping techniques reviewed in this article are based on digestion of genomic DNA, methods using amplification of DNA, and based on sequencing DNA. This would include Multilocus Sequence Typing (MLST) and Whole Genome Sequencing (WGS). Methods used in identification of bacterial strains are being constantly improved, and gaining more in depth knowledge and familiarising with their effectiveness enables better analysis and control of epidemiological situation e.g. in hospitals.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Allegranzi B., Pittet D. i wsp.: Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet, 15, 228–241 (2011)

2. Anderson E.S., Ward L.R., Saxe M.J., de Sa J.D.: Bacteriophage-typing designations of Salmonella Typhimurium. J. Hyg. (Lond). 78, 297–300 (1977)

3. Armengaud J.: Next-generation proteomics faces new challenges in environmental biotechnology. Curr. Opin. Biotechnol. 38, 174–182 (2016)

4. Ashayeri-Panah M., Eftekhar F., Ghamsari M.M., Parvin M., Feizabadi M.M.: Genetic profiling of Klebsiella pneumoniae: comparison of pulsed field gel electrophoresis and random amplified polymorphic DNA. Braz. J. Microbiol. 44, 823–828 (2013)

5. Baggesen D.L., Sgesen G., Nielsen E.M., Wegener H.C.: Phage typing of Salmonella Typhimurium – is it still a useful tool for surveillance and outbreak investigation? Euro Surveill. 15, 19471 (2010)

6. Bannerman T.L., Hancock G.A., Tenover F.C., Miller J.M.: Pulsed-field gel electrophoresis as a replacement for bacteriophage typing of Staphylococcus aureus. J. Clin. Microbiol. 33, 551–555 (1995)

7. Barbaro M., Bonfiglio A., Raffo L., Alessandrini A., Facci P., Barak I.: Fully electronic DNA hybridization detection by a standard CMOS biochip. Sensors and Actuators B: Chemical, 118, 41–46 (2006)

8. Barker R.M., Old D.C.: The usefulness of biotyping in studying the epidemiology and phylogeny of salmonellae. J. Med. Microbiol. 29, 81–88 (1989)

9. Berthouly-Salazar C., Mariac C., Couderc M., Pouzadoux J., Floc’h J.B., Vigouroux Y.: Genotyping-by-sequencing snp identification for crops without a reference genome: using transcriptome based mapping as an alternative strategy. Frontiers in Plant Sci. 7, 777 (2016)

10. Boerlin P., Bille J. i wsp.: Typing Candida albicans oral isolates from human immunodeficiency virus-infected patients by multilocus enzyme electrophoresis and DNA fingerprinting. J. Clin. Microbiol. 34, 1235–1248(1996)

11. Boughton P.: Whole genome MLST analysis. Scientistlive, http://www.scientistlive.com/content/whole-genome-mlst-analysis
(09.03.2017)

12. Bumgarner R.: DNA microarrays: Types, Applications and their future. Curr. Protoc. Mol. Biol. 101, 22.1.1–22.1.11(2013)

13. Caierão J., Paiva J.A., Sampaio J.L., Silva M.G., Santos D.R., Coelho F.S., Fonseca Lde S., Duarte R.S., Armstrong D.T., Regua-Mangia A.H.: Multilocus enzyme electrophoresis analysis of rapidly-growing mycobacteria: an alternative tool for identification and typing. Int. J. Infect. Dis. 42, 11–16 (2016)

14. Centers for Disease Control and Prevention: Multiple Locus Variable-number Tandem Repeat Analysis (MLVA), https://www.cdc.gov/pulsenet/pathogens/mlva.html (02.01.2016)

15. Chen Y., Yu Y. i wsp.: Development of an extended multilocus sequence typing for genotyping of Brucella isolates. J. Microbiol. Methods, 86, 252–254 (2011)

16. Colodner R., Bisharat N. i wsp.: Identification of the Emerging Pathogen Vibrio vulnificus Biotype 3 by Commercially Available Phenotypic Methods. J. Clin. Microbiol. 42, 4137–4140 (2004)

17. Coyne S., Guigon G., Courvalin P., Périchon B.: Screening and Quantification of the Expression of Antibiotic Resistance Genes in Acinetobacter baumannii with a Microarray. Antimicrob. Agents Chemother. 54, 333–340 (2010)

18. de Been M., Willems R.J. i wsp.: Core genome multilocus sequence typing scheme for high-resolution typing of Enterococcus faecium. J. Clin. Microbiol. 53, 3788–3797 (2015)

19. De La Higuera A., Gutiérrez J., Liébana J., Garcia-Mendoza A., Castillo A.: A new biotyping method for Streptococcus mutans with the API ZYM system. Clin. Microbiol. Infect. 5, 88–91 (1999)

20. Devriese L.A.: A simplified system for biotyping Staphylococcus aureus strains isolated from animal species. J. Appl. Bacteriol. 56, 215–220 (1984)

21. Duim B., Savelkoul P.: Typing of bacteria using Amplified Fragment Length Polymorphism (AFLP) analysis (w) Experimental approaches for assessing genetic diversity among microbial pathogens, red. A. van Belkum, B. Duim, J.P. Hays, WET, Wageningen, 2003, s. 83–84

22. Dworzański J.P.: Bottom-Up Proteomics Methods for Strain-Level Typing and Identification of Bacteria (w) Applications of Mass Spectrometry in Microbiology, red. P. Demirev, T.R. Sandrin, Springer International Publishing, Switzerland, 2016, s. 114

23. European Centre for Disease Prevention and Control: Healthcare-associated infections, http://ecdc.europa.eu/en/healthtopics/Healthcare-associated_infections/Pages/index.aspx (29.11.2016)

24. European Centre for Disease Prevention and Control: Setting breakpoints, http://www.eucast.org/clinical_breakpoints/eucast_setting_breakpoints/ (28.12.2016)

25. Minharro S., Lage A.P. i wsp.: Biotyping and Genotyping (MLVA16) of Brucella abortus Isolated from Cattle in Brazil, 1977 to 2008. PLoS ONE, 8, e81152 (2013)

26. Fitzgerald J.R., Meaney W.J., Hartigan P.J., Smyth C.J., Kapur V.: Fine-structure molecular epidemiological analysis of Staphylococcus aureus recovered from cows. Epidemiol. Infect. 119, 261–269 (1997)

27. Fothergill J.L., Walshaw M.J., Winstanley C.: Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur. Respir. J. 40, 227–238 (2012)

28. Gangiredla J., Jackson S.A., Elkins C.A., Feng P. C.: Novel microarray design for molecular serotyping of shiga toxin-producing Escherichia coli strains isolated from fresh produce. Appl. Environ. Microbiol. 80, 4677–4682 (2014)

29. Giedrys-Kalemba S.: Typowanie molekularne w dochodzeniu epidemiologicznym (w) Zakażenia szpitalne podręcznik dla zespołów kontroli zakażeń, red P. B. Heczko, J. Wójkowska-Mach, Wydawnictwo Lekarskie PZWL, Warszawa, 2009, s. 113–114

30. Goering R.V.: Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect. Genet. Evol. 10, 866–875 (2010)

31. Green E., Ob L.C., Okoh A.I., Nchabeleng M., Villiers B.E., Letsoalo T., Hoosen A.A., Bessong P.O., Ndip R.N.: IS6110 Restriction Fragment Length Polymorphism Typing of Drug-resistant Mycobacterium tuberculosis Strains from Northeast South Africa. JHPN. 31, 1–10 (2013)

32. Haquea F., Lib J., Wuc H.C., Liangd X.J.: Peixuan Guoa Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today, 8, 56–74 (2013)

33. Heather J.M., Chain B.: The sequence of sequencers: The history of sequencing DNA. Genomics, 107, 1–8 (2016)

34. Huang S.S., Platt, R. i wsp.: Automated Detection of Infectious Disease Outbreaks in Hospitals: A Retrospective Cohort Study. PLoS Medicine, 7, e1000238 (2010)

35. Hunter P.R., Gaston M.A.: Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J. Clin. Microbiol. 26, 2465–2466 (1988)

36. Hwang M.T., Landon P.B., Lee J., Choi D., Mo A.H., Glinsky G., Lal R.: Highly specific SNP detection using 2D graphene electronics and DNA strand displacement. Proc. Natl. Acad. Sci. USA, 113, 7088–7093 (2016)

37. Illumina: Illumina Sequencing Technology, http://www.illumina.com/documents/ products/techspotlights/techspotlight_sequencing.pdf (02.01.2016)

38. Illumina: Illumina Sequencing Technology, https://www.illumina.com/systems/ sequencing-platforms/hiseq-x.html (06.03.2017)

39. International Fungal Multi Locus Sequence Typing Database, mlst.mycologylab.org (02.01.2016)

40. Jackson S.A., Patel I.R., Barnaba T., LeClerc J.E., Cebula T.A.: Investigating the global genomic diversity of Escherichia coli using a multi-genome DNA microarray platform with novel gene prediction strategies. BMC Genomics, 12, 349 (2011)

41. Jia J., Bi Z.W., Chen Y.Z., Hou P.B., Zhang M., Shao K., Bi Z.Q.: Antibiotic resistance and molecular typing of Listeria monocytogenes from foods in Shandong province from 2009 to 2010. Zhonghua Yu Fang Yi Xue Za Zhi, 45, 1065–1067 (2011)

42. Jolley K.A., Maiden M.C.J.: Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology, 158, 1005–1015 (2012)

43. Jursa-Kulesza J., Kordek A., Kopron K., Wojciuk B., Giedrys-Kalemba S.: Molecular studies of an impetigo bullosa epidemic in full-term infants. Neonatology, 96, 61–68 (2009)

44. Karlsson E., Lärkeryd A., Sjödin A., Forsman M., Stenberg P.: Scaffolding of a bacterial genome using MinION nanopore sequencing. Sci. Rep. 5, 11996 (2015)

45. Koeleman J.G.M., Stoof J., Biesmans D.J., Savelkoul P.H.M., Vandenbroucke-Grauls C.M.J.E.: Comparison of Amplified Ribosomal DNA Restriction Analysis, Random Amplified Polymorphic DNA Analysis, and Amplified Fragment Length Polymorphism Fingerprinting for Identification of Acinetobacter Genomic Species and Typing of Acinetobacter baumannii. J. Clin. Microbiol. 36, 2522–2529 (1998)

46. Kostić T., Sessitsch A.: Microbial diagnostic microarrays for the detection and typing of food- and water-borne (bacterial) pathogens. Microarrays, 1, 3–24 (2012)

47. Krawczyk B., Leibner-Ciszak J., Stojowska K., Kur J.: The new LM-PCR/shifter method for the genotyping of microorganisms based on the use of a class IIS restriction enzyme and mediated PCR. J. Microbiol. Biotechnol. 21, 1366–1344 (2011)

48. Krawczyk B.: Diagnostyka Molekularna w zakażeniach szpitalnych. Post. Mikrobiol. 46, 367–378 (2007)

49. Kumari, N., Thakur S.K.: Randomly amplified polymorphic DNA-a brief review. AJAVS. 9, 6–13 (2014)

50. Kwong J.C., McCallum N., Sintchenko V., Howden B.P.: Whole genome sequencing in clinical and public health microbiology. Pathology, 47, 199–210 (2015)

51. Land M., Ussery D.W. i wsp.: Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genomics, 15, 141–161 (2015)

52. Leggett R.M., MacLean D.: Reference-free SNP detection: dealing with the data deluge. BMC Genomics, 15, S10 (2014)

53. Li W., Raoult D., Fournier P.E.: Bacterial strain typing in the genomic era. FEMS Microbiol. Rev. 33, 892–916 (2009)

54. Lindstedt B.A., Åkerström S. i wsp.: Use of multilocus variable-number tandem repeat analysis (MLVA) in eight European countries, 2012. Euro Surveill. 18, 20385 (2013)

55. Loy J.D., Clawson M.L.: Rapid typing of Mannheimia haemolytica major genotypes 1 and 2 using MALDI-TOF mass spectrometry. J. Microbiol. Methods. 136, 30–33 (2017)

56. Maiden M.C., Spratt, B.G. i wsp.: Multilocus sequence typing:
A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA, 95, 3140–3145 (1998)

57. Maiden M.C.J., McCarthy N.D.: MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Reviews Microbiology, 11, 728–736 (2013)

58. Microrao: Typing Methods, http://microrao.com/micronotes/typing.pdf (28.12.2016)

59. Międzobrodzki J., Małachowa N., Markiewski T., Białecka A., Kasprowicz A.: Differentiation of Staphylococcus aureus isolates based on phenotypical characters. Postępy Hig. Med. Dośw. 30, 322–327 (2008)

60. MLST, www.mlst.net (02.01.2016)

61. Munson E.L., Doern G.V.: Comparison of Three Commercial Test Systems for Biotyping Haemophilus influenzae and Haemophilus parainfluenzae. J. Clin. Microbiol. 45, 4051–4053 (2007)

62. Nanoportech: Store, https://store.nanoporetech.com/devices.html (02.03.2017)

63. National Institute for Public Health and the Environment (RIVM): Multiple-Locus Variable number tandem repeat Analysis, http://www.mlva.net/ (02.01.2017)

64. Nowakiewicz A., Ziółkowska G., Zięba P., Gnat S., Trościańczyk A., Adaszek, Ł.: Characterization of Multidrug Resistant E. faecalis Strains from Pigs of Local Origin by ADSRRS-Fingerprinting and MALDI-TOF MS; Evaluation of the Compatibility of Methods Employed for Multidrug Resistance Analysis. PLoS ONE, 12, e0171160 (2017)

65. Ota M., Asamura H., Oki T., Sada M.: Restriction enzyme analysis of PCR products. Methods Mol. Biol. 578, 405–414 (2009)

66. Parizad E.G., Valizadeh A.: The Application of Pulsed Field Gel Electrophoresis in Clinical Studies. JCRD, 10, DE01-DE04 (2016)

67. Pérez-Losada M., Cabezas P., Castro-Nallar E., Crandall K.A.: Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. Infect. Genet. Evol. 16, 38–53 (2013)

68. Pingault N.M., Riley T.V.: Moraxella (w) Molecular Typing in Bacterial Infections, red. I. Filippis, M.L. McKee, Sprnger, New Delhi, 2013, s. 214

69. Public databases for molecular typing and microbial genome diversity, www.pubmlst.org (02.01.2016)

70. Ramírez-Estrada S., Borgatta B., Rello J.: Pseudomonas aeruginosa ventilator-associated pneumonia management. Infect. Drug. Resist. 9, 7–18 (2016)

71. Rhoads A., Au K.F.: PacBio Sequencing and Its Applications. Genomics Proteomics Bioinformatics, 13, 278–289 (2015)

72. Rumore J.L., Tschetter L., Nadon C.: The Impact of Multilocus Variable-Number Tandem-Repeat Analysis on PulseNet Canada Escherichia coli O157:H7 Laboratory Surveillance and Outbreak Support, 2008–2012. Foodborne Pathog. Dis. 13, 255–261 (2016)

73. Sabat A.J., Budimir A., Nashev D., SheLeSh R., van Dijl J.M., Laurent F., Grundmann H., Friedrich A.W.: Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill. 18, 20380 (2013)

74. Sabat A.J., Friedrich A.W. i wsp.: Complete-genome sequencing elucidates outbreak dynamics of CA-MRSA USA300 (ST8-spa t008) in an academic hospital of Paramaribo, Republic of Suriname. Sci. Rep. 7, 41050 (2017)

75. Saghrouni F., Ben Abdeljelil J., Boukadida J., Ben Said M.: Molecular methods for strain typing of Candida albicans: a review.
J. Appl. Microbiol. 114, 1559–1574 (2013)

76. Salipante S.J., SenGupta D.J., Cummings L.A., Land T.A., Hoogestraat D.R., Cookson B.T.: Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J. Clin. Microbiol. 53, 1072–1079 (2015)

77. Sandrin T.R., Goldstein J.E., Schumaker S.: MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom. Rev. 32, 188–217 (2013)

78. Schmieger H.: Molecular survey of the Salmonella phage typing system of Anderson. J. Bacteriol. 181, 1630–1635 (1999)

79. Schwartz D.C., Cantor C.R.: Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell, 37, 67–75 (1984)

80. Selander R.K., Caugant D.A., Ochman H., Musser J.M., Gilmour M.N., Whittam T.S.: Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 51, 873–884 (1986)

81. Sękowska A., Gospodarek E., Kamińska D.: Antimicrobial susceptibility and genetic similarity of ESBL-positive Klebsiella pneumoniae strains. Arch. Med. Sci. 8, 993–997 (2012)

82. Shao W., Zhang M., Lam H., Lau, S.C.K.: A peptide identification-free, genome sequence-independent shotgun proteomics workflow for strain-level bacterial differentiation. Sci. Rep. 5, 14337 (2015)

83. Steglich M., Nübel U.: The challenge of detecting indels in bacterial genomes from short-read sequencing data. J. Biotechnol. http://dx.doi.org/10.1016/j.jbiotec.2017.02.026 (2017)

84. Stelling J., Platt, R. i wsp.: Automated use of WHONET and SaTScan to detect outbreaks of Shigella spp. using antimicrobial resistance phenotypes. Epidemiol. Infect. 138, 873–883 (2010)

85. Straus L., Mellmann, A., i wsp.: Detecting Staphylococcus aureus Virulence and Resistance Genes: a Comparison of Whole-Genome Sequencing and DNA Microarray Technology. J. Clin. Microbiol. 54, 1008–1016(2016)

86. Struelens M.J.: Molecular epidemiologic typing systems of bacterial pathogens: current issues and perspectives. Mem. Inst. Oswaldo Cruz. 93, 581–585 (1998)

87. Suffredini E., Lopez-Joven C., Maddalena L., Croci L., Roque A. (2011). Pulsed-field gel electrophoresis and PCR characterization of environmental Vibrio parahaemolyticus strains of different origins. Appl. Environ. Microbiol. 77, 6301–6304 (2011)

88. Sydnor E.R., Perl T.M.: Hospital Epidemiology and Infection Control in Acute-Care Settings. Clin. Microbiol. Rev. 24, 141–173
(2011)

89. Tenover F., Arbeit R., Goering R., Mickelsen P., Murray B., Pershing D., Swaminathan B.: Interpreting Chromosomal DNA Restriction Patterns Produced by Pulsed-Field Gel Electrophoresis: Criteria for Bacterial Strain Typing. J. Clin. Microbiol. 33, 2233–2239 (1995)

90. Thompson J.F., Milos, P.M. The properties and applications of single-molecule DNA sequencing. Genome Biol. 12, 217 (2011)

91. Van Belkum A., Struelens M. i wsp.: Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin. Microbiol. Infect. 13, 1–46 (2007)

92. Viana D., Penadés J.R. i wsp.: A single natural nucleotide mutation alters bacterial pathogen host-tropism. Nat. Genet. 47, 361–366 (2015)

93. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Pot J., Peleman J., Kuiper M.: AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995)

94. Voskresenskaya E., Savin C., Leclercq A., Tseneva G., Carniel E.: Typing and Clustering of Yersinia pseudotuberculosis Isolates by Restriction Fragment Length Polymorphism Analysis Using Insertion Sequences. J. Clin. Microbiol. 52, 1978–1989 (2014)

95. Wasyl D., Elsedawy A., Lukinmaa S.: PulseNet Europe międzynarodowa sieć typowania molekularnego w nadzorze epidemiologicznym chorób szerzących się drogą pokarmową. Medycyna Wet. 64, 123–126 (2008)

96. Williams M.L., LeJeune J.T.: Phages and bacterial epidemiology (w) Bacteriophages in health and disease, red. P. Hyman, S.T. Abedon, Centre for Agriculture and Bioscience International, Wallingford, 2012, s. 78

97. Wolska K., Szweda P.: Genotyping Techniques for Determining the Diversity of Microorganisms (w) Genetic Diversity in Microorganisms, red. M. Caliskan, InTech, 2012, 53–55 (2012)

98. Wolter D.J., Hanson N.D., Lister P.D.: Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol. Lett. 1, 137–143 (2004)

99. World Health Organisation: Report on the Burden of Endemic Health Care-Associated Infection Worldwide, A systematic review of the literature, http://apps.who.int/iris/bitstream/10665/80135/1/9789241501507_eng.pdf (12.03.2017)

100. World Health Organisation: WHO publishes list of bacteria for which new antibiotics are urgently, needed, http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/ (12.03.2017)

101. Xu F.L., Guo Y.C., Wan H.X., Fu P., Zeng H.W., Li Z.G., Pei X.Y., Liu X.M.: PFGE genotyping and antibiotic resistance of Lactobacillus distributed strains in the fermented dairy products. Ann. Microbiol. 62, 255–262 (2012)

102. Ziółkowski P.A., Babula-Skowrońska D., Kaczmarek M., Cieśla A., Sadowski J.: Sekwencjonowanie porównawcze genomów: generowanie markerów genetycznych typu INDEL i SNP. Biotechnologia, 4, 53–68 (2010)

103. Zolfo M., Tett A., Jousson O., Donati C., Segata N.: MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples. Nucleic Acids Res. 45, e7 (2016)

EXTRA FILES

COMMENTS