Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 0079-4252
eISSN: 2545-3149





Volume / Issue / page

Related articles

VOLUME 56 , ISSUE 4 (April 2017) > List of articles


Marek Bartoszewicz * / Urszula Czyżewska

Keywords : cereulide, enterotoxins, psychrotolerance, taxonomy

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 56, Issue 4, Pages 440-450, DOI:

License : (CC BY-NC-ND 4.0)

Published Online: 22-May-2019



Bacillus cereus sensu lato is a group of several species of Gram-positive sporeformers ubiquitous in nature and showing huge impact on human activities. They are often found in soil, air, plant material, animal tissues and digestive tracts as well as in food products. Their genetic similarities and frequent horizontal gene transfer causes doubts regarding their taxonomy. In addition, their toxicity and psychrotolerance constitute serious problems in the dairy industry, being responsible for food-poisonings and spoilage of cold-stored products. Finally, recent finding indicate that B. cereus sensu lato toxicity plays an important role not only in their virulence, but also in social interactions with other bacteria.

Content not available PDF Share



1. Ash C., Farrow J.A.E., Wallbanks S., Collins M.D.: Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett. Appl. Microbiol. 13, 202–206 (1991)

2. Auch A.F., von Jan M., Klenk H.P., Goker M.: Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomic Sci. 28, 117–134 (2010)

3. Bartoszewicz M., Bideshi D.K., Kraszewska A., Modzelewska E., Święcicka I.: Natural isolates of Bacillus thuringiensis display genetic and psychrotrophic properties characteristic of Bacillus weihenstephanensis. J. Appl. Microbiol. 106, 1967–1975 (2009)

4. Bartoszewicz M., Hansen B.M., Święcicka I.: Bacillus cereus sensu lato are commonly present contaminants of fresh and heat-treated milk. Food Microbiol. 25, 588–596 (2008)

5. Bartoszewicz M., Kroteń M.A., Święcicka I.: Germination and proliferation of emetic Bacillus cereus sensu lato strains in milk. Folia Microbiol. 58, 529–535 (2013)

6. Bartoszewicz M., Marjańska P.S.: Milk-originated Bacillus cereus sensu lato strains harbouring Bacillus anthracis-like plasmids are genetically and phenotypically diverse. Food Microbiol. 67, 23–30 (2017)

7. Bartoszewicz M., Święcicka I., Buczek J.: Cereulidyna i enterotoksyny Bacillus cereus sensu lato. Med. Weter. 62, 28–31 (2006)

8. Bavykin S.G., Lysov Y.P., Zakhariev V., Kelly J.J., Jackman J., Stahl D.A., Cherni A.: Use of 16S rRNA, 23S rRNA, and gyrB sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. J. Clin. Microbiol. 42, 3711–3730 (2004)

9. Bednarczyk A., Daczkowska-Kozon E.G.: Czynniki patogenności bakterii z grupy Bacillus cereus. Post. Microbiol. 47, 51–63 (2008)

10. Berry C., O’Neil S., Ben-Dov E., Jones A.F., Myrphy L., Quail M.A., Holden M.T.G., Harris D., Zaritsky A., Parkhill J.: The toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 68, 5082–5095 (2002)

11. Bohm M.E., Huptas C., Krey V.M., Scherer S.: Massive horizontal gene transfer, strictly vertical inheritance and ancient duplications differentially shape the evolution of Bacillus cereus enterotoxin operons hbl, cytk and nhe. BMC Evol. Biol. 15, 246 (2015)

12. Cheng Y-Q.: Deciphering the biosynthetic codes for the potent anti-SARS-CoV cyclodepsipeptide valinomycin in Streptomyces tsuimaensis ATCC 15141. Chem. Bio. Chem. 7, 471–477 (2006)

13. Cherif A., Brusetti L., Borin S., Rizzi A., Boudabous A., Khyami-Horani H., Daffonchio D.: Genetic relationship in the Bacillus cereus group by rep-PCR fingerprinting and sequencing of a Bacillus anthracis-specific rep-PCR fragment. J. Appl. Microbiol. 94, 1108–1119 (2003)

14. Cohan F.M.: Sexual isolation and speciation in bacteria. Genetica, 116, 359–370 (2002)

15. Czaban J., Księżniak A., Perzyński A.: An attempt to protect winter wheat against Fusarium culmorum by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides. Pol. J. Microbiol. 53, 175–182 (2004)

16. Didelot X., Barker M., Falush D., Priest F.G.: Evolution of pathogenicity in the Bacillus cereus group. Syst. Appl. Microbiol. 32, 81–90 (2009)

17. Dierick K., van Coillie C., Święcicka I., Meyfroidt G., Devlieger H., Meulemans A., Hoedemaekers G., Fourie L., Heyndrickx M., Mahillon J.: A fatal family outbreak of Bacillus cereus food poisoning. J. Clin. Microbiol. 43, 4277–4279 (2005)

18. Driks A.: Bacillus anthracis spore. Mol. Asp. Med. 30, 368–373 (2009)

19. Ehling-Schulz M., Fricker M., Grallert H., Rieck P., Wagner M., Scherer S.: Cereulide synthetase gene cluster from emetic Bacillus cereus: Structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol. 6, 20 (2006)

20. Ehling-Schulz M., Scherer S. i wsp.: Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology, 151, 183–197 (2005)

21. Errington J.: Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol. 1, 117–126 (2003)

22. Graumann P.L., Marahiel M.A.: The major cold shock protein of Bacillus subtilis CspB binds with high affinity to the ATTGG- and CCAAT sequences in single stranded oligonucleotides. FEBS Lett. 338, 157–160 (1994)

23. Graumann P.L., Marahiel M.A.: Cold shock response in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 1, 203–209 (1999)

24. Guillemet E., Cadot C., Tra S.-L., Guinebretiere M.-H., Lereclus D., Ramaro N.: The InhA metalloproteases of Bacillus cereus contribute concomitantly to virulence. J. Bacteriol. 192, 286–294 (2010)

25. Guinebretiere M.-H., Sorokin A. i wsp.: Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int. J. Syst. Evol. Microbiol. 63, 31–40 (2013)

26. Guinebretiere M.H., de Vos P. i wsp.: Ecological diversification in the Bacillus cereus group. Environ. Microbiol. 10, 851–865 (2008)

27. Helgason E., Okstad O.A., Caugant D.A., Johansen H.A., Fouet A., Mock M., Hegna I., Kolsto A.-B.: Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66, 2627–2630 (2000)

28. Hoffmaster A.R., Fraser C.M. i wsp.: Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA, 101, 8449–8454 (2004)

29. Hoton F.M., Andrup L., Święcicka I., Mahillon J.: The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiology, 151, 2121–2124 (2005)

30. Hoton F.M., Fornelos N., N’Guessan E., Hu X., Święcicka I., Dierick K., Jaaskelainen E., Salkinoja-Salonen M., Mahillon J.: Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. Environ. Microbiol. Rep. 1, 177–183 (2009)

31. Hu X., Hansen B.M., Eilenberg J., Hendriksen N.B., Smidt L., Yuan Z., Jensen G.B.: Conjugative transfer, stability and expression of a plasmid encoding a cry1Ac gene in Bacillus cereus group strains. FEMS Microbiol. Lett. 231, 45–52 (2004)

32. Jensen G.B., Hansen B.M., Eilenberg J., Mahillon J.: The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5, 631–640 (2003)

33. Jimenez G., Urdiain M., Cifuentes A., Lopez-Lopez A., Blanch A.R., Tamames J., Kampfer P., Kolsto A.-B., Ramon D., Martinez J.F.: Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparison of the species of the group by means of ANI calculations. Syst. Appl. Microbiol. 36, 383–391 (2013)

34. Jung M.Y., Kim J.S., Peak W.K., Lim J., Lee H., Kim P.I., Ma J.Y., Kim W., Chang Y.H.: Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment. J. Microbiol. 49, 1027–1032 (2011)

35. Jung M.-Y., Paek W.K., Park I.-S., Han J.R., Sin Y., Peak J., Rhee M.-S., Kim H., Song H.S., Chang Y.-H.: Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow Sea. J. Microbiol. 48, 867–871 (2010)

36. Kaminska P.S., Yernazarova A., Drewnowska J. M., Zambrowski G., Swiecicka I.: The worldwide distribution of genetically and phylogenetically diverse Bacillus cereus isolates harbouring Bacillus anthracis-like plasmids. Environ. Microbiol. Rep. 7, 738–745 (2015)

37. Keim P., Gruendike J.M., Klevytska A.M., Schupp J.M., Challacombe J., Okinaka R.: The genome and variation of Bacillus anthracis. Mol. Asp. Med. 30, 397–405 (2009)

38. Kolsto A.-B., Tourasse N.J., Okstad A.: What sets Bacillus anthracis apart from other Bacillus species? Annu. Rev. Microbiol. 63, 451–476 (2009)

39. Kroteń M.A., Bartoszewicz M., Święcicka I.: Cereulide and valinomycin, two important natural dodecadepsipeptides with ionophoretic activities. Pol. J. Microbiol. 59, 3–10 (2010)

40. Lechner S., Mayr R., Francis K.P., Pruβ B.M., Kaplan T., Wieβner-Gunkel E., Steward G.S.A.B., Scherer S.: Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 48, 1373–1382 (1998)

41. Liu B., Liu G.H., Hu G.S., Sengonca C., Lin N.Q., Tang J.Y., Tang W.Q., Lin Y.Z.: Bacillus bingmayongensis sp. nov., isolated from the pit soil of the Emperor Qin’s Terra-cotta warriors in China. Antonie Van Leeuwehoek, 105, 501–510 (2014)

42. Liu Y., Lai Q., Goker M., Meier-Kolthoff J.P., Wang M., Sun Y., Wang L., Shao Z.: Genomic insights into the taxonomic status of the Bacillus cereus group. Sci. Rep. 5, 14082 (2015)

43. Lund T., De Buyser M.L., Granum P.E.: A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38, 254–261 (2000)

44. Lund T., Granum P.E.: Characterization of a non-hemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol. Lett. 141, 151–156 (1996)

45. Maianski N.A., Roos D., Kuijpers T.W.: Tumor necrosis factor alpha induces a caspase – independent death pathway in human neutrophiles. Blood, 101, 1987–1995 (2003)

46. Małek W., Wdowiak-Wróbek S., Kalita M., Święcicka I.: W poszukiwaniu koncepcji gatunku bakteryjnego. Post. Mikrobiol. 44, 323–328 (2005)

47. Miller R.A., Beno S.M., Kent D.J., Carroll L.M., Martin N.H., Boor K.J., Kovac J.: Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. Int. J. Syst. Evol. Microbiol. 66, 4744–4753 (2016)

48. Moayeri M., Leppla S.H.: Cellular and systemic effects of anthrax lethal toxin and edema toxin. Mol. Asp. Med. 30, 439–455 (2009)

49. Moayeri M., Leppla S.H., Vrentas C., Pomerantsev A.P., Liu S.: Anthrax pathogenesis. Annu. Rev. Microbiol. 69, 185–208 (2015)

50. Modrie P., Beuls E., Mahillon J.Ł Differential plasmid transfer dynamics of pAW63 plasmid among members of the Bacillus cereus group in food microcosms. J. Appl. Microbiol. 108, 888–897 (2010)

51. Moir A., Corfe B.M., Behravan J.: Spore germination. Cell. Mol. Life Sci. 59, 403–409 (2002)

52. Nakamura L.K.Ł.: Bacillus pseudomycoides sp. nov. Int. J. Syst. Bacteriol. 48, 1031–1035 (1998)

53. Paananen A., Jarvinen K., Sareneva T., Salkinoja-Salonen M.S., Timonen T., Holtta E.: Valinomycin induced apoptosis oh human NK cells is predominantly caspase independent. Toxicology, 212, 37–45 (2005)

54. Paananen A., Mikkola R., Sareneva T., Matikainen S., Hess M., Andersson M., Julkunen I., Salkinoja-Salonen M.S., Timonen T.: Inhibition of human natural killer cell activity by cereulide, an emetic toxin from Bacillus cereus. Clin. Exp. Immunol. 129, 420–428 (2002)

55. Patino-Navarrete R., Sanchis V.: Evolutionary processes and environmental factors underlying the genetic diversity and lifestyles of Bacillus cereus group bacteria. Res. Microbiol. 168, 309–318 (2017)

56. Perego M., Hoch J.A.Ł Commingling regulatory systems following acquisition of virulence plasmids by Bacillus anthracis. Trends Microbiol. 16, 215–221 (2008)

57. Phelps R.J., McKillip J.L.: Enterotoxin production in natural isolates of Bacillaceae outside the Bacillus cereus group. FEMS Microbiol. Lett. 68, 3147–3151 (2002)

58. Rasko D.A., Altherr M.R., Han C.S., Ravel J.: Genomics of the Bacillus cereus group of organisms. FEMS Microbiol. Rev. 29, 303–329 (2005)

59. Rasko D.A., Read T.D. i wsp.: The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res. 32, 977–988 (2004)

60. Raymond B., Bonsall M.B.: Cooperation and the evolutionary ecology of bacterial virulence: the Bacillus cereus group as a novel study system. Bioessays, 35, 706–716 (2013)

61. Raymond B., Wyres K.L., Sheppard S.K., Ellis R.J., Bonsall M.B.: Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoS Pathog. 6: e1000905 (2010)

62. Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean D.H.: Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806 (1998)

63. Setlow P.: I will survive: DNA protection in bacterial spores. Trends Microbiol. 15, 172–180 (2007)

64. Slamti L., Lereclus D.: A cell-cell signaling peptide activates the PlcR virulenc regulon in bacteria of the Bacillus cereus group. EMBO J. 21, 4550–4559 (2002)

65. Sonenshein A.L.: Control of sporulation initiation in Bacillus subtilis. Curr. Opin. Microbiol. 3, 561–566 (2000)

66. Stenfors Arensen L.P., Fagerlund A., Granum P.E.: From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32, 579–606 (2008)

67. Svensson B., Ekelund K., Ogura H., Christiansson A.: Characterization of Bacillus cereus isolated from milk silo tanks at eight different dairy plants. Int. Dairy J. 14, 17–27 (2004)

68. Święcicka I.: Natural occurrence of Bacillus thuringiensis and Bacillus cereus in eukaryotic organisms: a case for symbiosis. Biocontrol Sci. Tech. 18, 221–239 (2008)

69. Święcicka I., Bartoszewicz M., Kasulyte-Creasey D., Drewnowska J., Murawska E., Yernazarova A., Łukaszuk E., Mahillon J.: Diversity of thermal ecotypes and potential pathotypes of Bacillus thuringiensis soil isolates. FEMS Microbiol. Ecol. 85, 262–272 (2013)

70. Ulusu N.N., Tezcan E.F.: Cold shock proteins. Turk. J. Med. Sci. 31, 283–290 (2001)

71. Vos M., Didelot X.: A comparison of homologous recombination rates in bacteria and archaea. The ISME J. 3, 199–208 (2009)

72. Wouters J.A., Rombouts F.M., Kuipers O.P., de Vos W.M., Abee T.: The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Syst. Appl. Microbiol. 23, 165–173 (2000)

73. Zwick M.E., Read T.D. i wsp.: Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis. Genome Res. 22, 1512–1524 (2012)