ROLE OF MICROBIOTA IN MAINTAINING THE HOMEOSTASIS IN THE HUMAN BODY

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

39
Reader(s)
126
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 57 , ISSUE 1 (June 2018) > List of articles

ROLE OF MICROBIOTA IN MAINTAINING THE HOMEOSTASIS IN THE HUMAN BODY

Katarzyna Góralska * / Magdalena Dzikowiec

Keywords : human health, natural microbiota

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 57, Issue 1, Pages 5-11, DOI: https://doi.org/10.21307/PM-2018.57.1.005

License : (CC BY-NC-ND 4.0)

Published Online: 20-May-2019

ARTICLE

ABSTRACT

The human body is believed to be occupied by around 4 × 1013 microorganism cells, which is 10 times the number of cells of the human body. Multidisciplinary studies conducted worldwide by microbiologists and physicians suggest that the microorganisms which colonize the human body can more actively influence the state of health than previously thought. The most important role in the regulation of the homeostasis is played by ontocenoses of the intestine. Imbalanced taxonomic composition and number of intestinal microbiota may contribute to the development of numerous infectious (HIV), metabolic (diabetes, obesity) and immunological (allergy, asthma, rheumatoid arthritis) diseases, as well as conditions associated with various organs (kidneys, liver, heart, inflammatory bowel disease, Crohn’s disease), cancer (colon) and the nervous system (autism, sleeping problems, stress, chronic fatigue syndrome, schizophrenia, Alzheimer’s disease). The composition of the intestinal microbiota can be modified by applying a specific type of diet.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Adams J.B., Johansen L.J., Powell L.D., Quig D., Rubin R.A.: Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 16, 11–22 (2011)

2. Ahn H.Y., Kim M., Chae J.S.: Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduces fasting triglycerides and enhances apolipoprotein A-V levels in non-diabetic subjects with hypertriglyceridemia. Atherosclerosis, 241, 649–656 (2015)

3. Almgren M, Lavebratt C. i wsp.: Adenovirus-36 is associated with obesity in children and adults in Sweden as determined by rapid ELISA. Plos One, 7, e41652 (2012)

4. Anderson P.: Sudden Infant Death Syndrome Due to Brainstem Serotonin Abnormality. Medscape – Feb 04, 2010. http://www.medscape.com/viewarticle/716500 (10.10.2017)

5. Bailey M.T., Coe C.L.: Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev. Psychobiol. 35, 146–155 (1999)

6. Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignaca H.M., Dinan T.G.: Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA, 108, 16050–16055 (2011)

7. Cani P.D., Neyrinck A.M., Fava F., Knauf C., Burcelin R.G., Tuohy K.M.: Selective increases of bifidobacteria in gut microflora improve high-fat diet induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50, 2374–2383 (2007)

8. Cantarel B.L., Waubant E., Chehoud C.: Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J. Investig. Med. 63, 729–734 (2015)

9. Carding S., Verbeke K., Vipond D.T., Corfe B.M., Owen L.J.: Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, DOI: 10.3402/mehd.v26.26191 (2015)

10. Chen P.C., Syu G.D., Chung K.H., Ho Y.H., Chung F.H., Chen P.H., Lin J.M., Chen Y.W., Tsai S.Y., Chen C.S.: Antibody profiling of bipolar disorder using Escherichia coli proteome microarrays. Mol. Cell. Proteomics, 14, 510–518 (2015)

11. Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R.D., Shanahan F., Dinan T.G., Cryan J.F.: The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry, 18, 666–673 (2013)

12. Cluny N.L., Keenan C.M., Reimer R.A., Le Foll B., Sharkey K.A.: Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol. Plos One, 10, e0144270 (2015)

13. Croxford J.L., Miyake S.: Immunoregulation of multiple sclerosis by gut environmental factors. Clin. Exp. Neuroimmunol. 6, 362–369 (2015)

14. Emoto T., Yamashita T., Sasaki N.: Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J. Atheroscler. Thromb. 23, 908–921 (2016)

15. Felizardo R.J.F., Castoldi A., Andrade-Oliveira V., Câmara N.O.S.: The microbiota and chronic kidney diseases: a double-edged sword. Clin. Transl. Immunology, 5, e86. DOI: 10.1038/cti.2016. 36 (2016)

16. Fiedurek J.: Mikrobiom a zdrowie człowieka. Wydawnictwo UMCS, Lublin, 2014

17. Fiedurek J.: Rola żywności i żywienia w profilaktyce i terapii chorób człowieka. Wydawnictwo UMCS, Lublin, 2007

18. Freestone P.P., Williams P.H., Haigh R.D., Maggs A.F., Neal C.P., Lyte M.: Growth stimulation of intestinal commensal Escherichia coli by catecholamines: a possible contributory factor in trauma-induced sepsis. Shock, 18, 465–470 (2002)

19. Grossi E., Melli S., Dunca D., TerruzziV.: Unexpected improvement in core autism spectrum disorder symptoms after long-term treatment with probiotics. SAGE Open. Med. Case Rep. 4, 2050313X16666231. DOI: 10.1177/2050313X16666231 (2016)

20. Hsiao E.Y., Mazmanian S.K. i wsp.: Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155, 1451–1463 (2013)

21. Huang Y.J., Boushey H.A.: The microbiome in asthma. J. Allergy Clin. Immunol. 135, 25–30 (2015)

22. Human Microbiome Project Consortium: A framework for human microbiome research. Nature, 486, 215–221 (2012)

23. Human Microbiome Project Consortium: Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214 (2012)

24. Karlsson F.H., Fåk F., Nookaew I.: Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012)

25. Kaur S., Kaur S.: Bacteriocins as potential anticancer agents. Front. Pharmacol. 6, 272 (2015)

26. Kelly T.N., Bazzano L.A., Ajami N.J.: Gut microbiome associates with lifetime cardiovascular disease risk profile among. Bogalusa heart study participants. Circ. Res. 119, 956–964 (2016)

27. Kleimann A., Toto S., Eberlein C.K., Kielstein J.T., Bleich S., Frieling H., Sieberer M.: Psychiatric symptoms in patients with Shiga toxin-producing E. coli O104:H4 induced haemolytic-uraemic syndrome. PLoS One. 9, e101839 (2014)

28. Kosiewicz M.M., Dryden G.W., Chhabra A., Alard P.: Relationship between gut microbiota and development of T cell associated disease. FEBS Lett. 588, 4195–4206 (2014)

29. Kurnatowska A. (red.) Ekologia i jej związki z różnymi dziedzinami wiedzy. Wyd. PWN Wrocław (1999)

30. Larsen N., Vogensen F.K., van den Berg F., Nielsen D.S., Andreasen A.S., Pedersen B.K., Abu Al-Soud W., Sorensen S.J., Hansen L.H., Jakobsen M.: Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. Plos One, 5, e90852 (2010)

31. Laursen M.F., Andersen L.B.B., Michaelsen K.F., Mølgaard C., Trolle E., Bahl M.I., Licht T.R.: Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity. mSphere 1, e00069–15 (2016)

32. Leclercq S., Delzenne N.M. i wsp.: Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl. Acad. Sci. USA, 111, 4485–4493 (2014)

33. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I.: Human gut microbes linked to obesity. Nature, 444, 1022–1023 (2006)

34. Machiels K., Vermeire S. i wsp.: A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63, 1275–1283 (2014)

35. Maes M., Leonard B.E., Myint A.M., Kubera M., Verkerk R.: The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 35, 702–721 (2011)

36. Matthews D.M., Jenks S.M.: Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav. Processes, 96, 27–35 (2013)

37. Maynard C.L., Elson C.O., Hatton R.D., Weaver C.T.: Reciprocal interactions of the intestinal microbiota and immune system. Nature, 489, 231–241 (2012)

38. Miyake S., Kim S., Suda W.: Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters. Plos One, 10: e0137429 (2015)

39. Mulle J.G., Sharp W.G., Cubells J.F.: The Gut Microbiome: A New Frontier in Autism Research. Curr. Psychiatry Rep. 15, 337 (2013)

40. Murri M., Leiva I., Gomez-Zumaquero J.M., Tinahones F.J., Cardona F., Soriguer F., Queipo-Ortuno M.I.: Gut microbiota in children with type 1 diabetes differs from that in healthy children: A case-control study. BMC Med. 11, DOI: 10.1186/1741-7015-11-46 (2013)

41. Nguyen C., Nguyen V. D.: Discovery of Azurin – like anticancer bacteriocins from human gut microbiome through homology modeling and molecular docking against the tumor suppressor p53. Biomed. Res. Int. DOI: 10.1155/2016/8490482 (2016)

42. Nowak A., Libudzisz Z.: Mutagenic and carcinogenic metabolites formed by human colonic flora. Post. Mikrobiol. 43, 321–339 (2004)

43. O’Brien M.E., Anderson H., Kaukel E., O’ Byrne K., Pawlicki M., von Pawel J., Reck M.: SRL172 (killed Mycobacterium vaccae) in addition to standard chemotherapy improves quality of life without affecting survival, in patients with advanced non-small-cell lung cancer: phase III results. Ann. Oncol. 15, 906–914 (2004)

44. Oriach C.S., Robertson R.C., Stanton C., Cryan J.F., Dinan T.G.: Food for thought: The role of nutrition in the microbiota-gut-brain axis. Clin. Nutr. Exp. 6, 25–38 (2016)

45. Parracho H.M., Bingham M.O., Gibson G.R., McCartney A.L.: Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 54, 987–991 (2005)

46. Ponterio E., Gnessi L.: Adenovirus 36 and obesity: An overwiev. Viruses, 7, 3719–3740 (2015)

47. Rao A.V., Bested A.C., Beaulne T.M., KatzmanM.A., Iorio C., Berardi J.M., Logan A.C.: A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 1, DOI: 10.1186/1757-4749-1-6 (2009)

48. Remely M., Dworzak S., Hippe B., Zwielehner J., Aumüller E., Brath H., Haslberger A.: Abundance and Diversity of Microbiota in Type 2 Diabetes and Obesity. J. Diabetes Metab. 4, DOI: 10.4172/2155-6156.1000253 (2013)

49. Rogers G.B., Keating D.J, Young R.L., Wong M-L., Licinio J., Wesselingh S.: From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatr. 21, 738–748 (2016)

50. Rudzki L., Szulc A.: Wpływ jelitowej flory bakteryjnej na ośrodkowy układ nerwowy i jej potencjalne znaczenie w leczeniu zaburzeń psychicznych. Farmakoter. Psychiatr. Neurol. 2, 69–77 (2013)

51. Seksik P., Rigottier-Gois L., Gramet G., Sutren M., Pochart P., Marteau P., Jian R., Dore J.: Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut, 52, 237–242 (2003)

52. Sender R., Fuchs S., Milo R.: Revised estimates for the number of human and bacteria cells in the body. Plos Biology, DOI: 10.1371/journal.pbio.1002533 (2016)

53. Shaikin F., Abhinand P., Ragunath P.: Identification and characterization of Lactobacillus salavarius bacteriocins and its relevance in cancer therapeutics. Bioinformation, 8, 589–594 (2012)

54. West C.E., Jenmalm M.C., Prescott S.L.: The gut microbiota and its role in the development of allergic disease: a wider perspective. Clin. Exp. Allergy, 45, 43–53 (2015)

55. Yamashita T., Emoto T., Sasaki N., Hirata K.: Gut Microbiota and Coronary Artery Disease. Int. Heart J. 57, 663–671 (2016)

56. Yeoh N., Burton J.P., Suppiah P., Reid G., Stebbings S.: The role of the microbiome in rheumatic diseases. Curr. Rheumatol. Rep. 15, DOI: 10.1007/s11926-012-0314-y (2013)

57. Yin J., Liao S.X., He Y.: Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J. Am. Heart Assoc. 4, e002699 (2015)

58. Zhang Y.J., Li S., Gan R.Y., Zhou T., Xu D.P., Li H.B.: Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci. 16, 7493–519 (2015)

59. Zwolinska-Wcislo M., Pawlik W.W. i wsp.: Effect of Candida colonization on human ulcerative colitis and the healing of inflammatory changes of the colon in the experimental model of colitis ulcerosa. J. Physiol. Pharmacol. 60, 107–118 (2009)

EXTRA FILES

COMMENTS