PLASMID-MEDIATED QUINOLONE RESISTANCE – PMQR

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

16
Reader(s)
38
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 57 , ISSUE 1 (June 2018) > List of articles

PLASMID-MEDIATED QUINOLONE RESISTANCE – PMQR

Katarzyna Piekarska *

Keywords : Enterobacteriaceae, fluoroquinolone resistance, PMQR

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 57, Issue 1, Pages 47-57, DOI: https://doi.org/10.21307/PM-2018.57.1.047

License : (CC BY-NC-ND 4.0)

Published Online: 23-May-2019

ARTICLE

ABSTRACT

Fluoroquinolones (FQ) are broad-spectrum antimicrobial agents widely used to treat a range of infections in clinical medicine. However, the surveillance studies demonstrate that fluoroquinolone resistance rates increased in Enterobacteriaceae in the past years.
FQ inhibit bacterial DNA synthesis by interfering with the action of two bacterial enzymes – DNA gyrase and topoisomerase IV. There are two categories of quinolone resistance mechanisms: chromosomally encoded and acquired. Mutations in chromosomal genes encoding gyrase and topoisomerase IV are the most common mechanisms responsible for high-level fluoroquinolone resistance. Mutations can occur also in regulatory genes which control the expression of native efflux pumps located in bacterial membrane. Furthermore, three mechanisms of plasmid-mediated quinolone resistance (PMQR) have been discovered so far, including Qnr proteins, the aminoglycoside acetylotransferase variant – AAC(6’)-Ib-cr, and plasmid-mediated efflux pumps – QepA and OqxAB. Although the PMQR mechanisms alone cause only low-level resistance to fluoroquinolone, they can complement other mechanisms of chromosomal resistance and facilitate the selection of higher-level resistance. Moreover, plasmids with PMQR mechanisms often encode additional resistance traits (ESBLs, pAmpC, KPC) contributing to multidrug resistance (MDR). This review is focused on a range of molecular mechanisms which underlie quinolone resistance.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Alekshun M.N., Levy S.B.: Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob. Agents Chemother. 41, 2067–2075 (1997)

2. Alekshun M.N., Levy S.B.: The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol. 7, 410–413 (1999)

3. Ball P.: Quinolone generations: natural history or natural selection? J. Antimicrob. Chemother. 46 Suppl T1, 17–24 (2000)

4. Baranello L., Levens D., Gupta A., Kouzine F.: The importance of being supercoiled: how DNA mechanics regulate dynamic processes. Biochim. Biophys. Acta, 1819, 632–638 (2012)

5. Barnard F.M., Maxwell A.: Interaction between DNA gyrase and quinolones: effect of alanine mutations at GyrA subunit residues Ser (83) and Asp(87). Antimicrob. Agents Chemother. 45, 1994–2000 (2001)

6. Baucheron S., Imberechts H., Chaslus-Dancla E., Clockaert A.: The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar Typhimurium phage type DT204. Microb. Drug Resist. 8, 281–289 (2002)

7. Boulund F., Johnning A., Pereira M.B., Larsson D.G., Kristiansson E.: A novel method to discover fluoroquinolone antibiotic resistance (qnr) genes in fragmented nucleotide sequences. BMC Genomics, 13, 695 (2012)

8. Breines, D.M., Ouabdesselam S., Ng E.Y., Tankovic J., Shah S., Soussy C.J., Hooper D.C.: Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of parE gene encoding a subunit of topoisomerase IV. Antimicrob. Agents Chemother. 41, 175–179 (1997)

9. Cattoir V., Poirel L., Mazel D., Soussy C.J., Nordmann P.: Vibrio splendidus as the source of plasmid-mediated QnrS-like quinolone resistance determinants. Antimicrob. Agents Chemother. 51, 2650–2651 (2007)

10. Cattoir V., Nordmann P.: Plasmid-mediated quinolone resistance in gram-negative bacterial species: an update. Curr. Med. Chem. 16, 1028–1046 (2009)

11. Cavaco L.M., Hasman H., Xia S., Aarestrup F.M.: qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob. Agents Chemother. 53, 603–608 (2009)

12. Chmelnitsky I., Hermesh O., Navon-Venezia S., Strahilevitz J., Carmeli Y.: First detection of aac(6’)-Ib-cr in KPC-producing Klebsiella pneumoniae isolates from Tel Aviv, Izrael. J. Antimicrob Chemother. 64, 718–722 (2009)

13. Chmielarczyk A., Pobiega M., de Champs C., Wojkowska-Mach J., Rozanska A., Heczko P.B., Guillard T., Bulanda M.: The high prevalence of plasmid-mediated quinolone resistance among very low birth-weight infants in Poland. Microb. Drug Resist. 21, 391–397 (2015)

14. Corbett K.D., Schoeffler A.J., Thomsen N.D., Berger J.M.: The structural basic for substrate specifity in DNA topoisomerase IV. J. Mo.l Biol. 351, 545–561 (2005)

15. Dalhoff A.: Resistance surveillance studies: A multifaceted problem – the fluoroquinolone example. Infection, 40, 239–262 (2012)

16. Dolejska M., Cizek A. i wsp.: Plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic
and a horseback riding centre. J. Antimicrob. Chemother. 66, 757–764 (2011)

17. Drlica K.: Mechanism of fluoroquinolone action. Curr. Opin. Microbiol. 2, 504–508 (1999)

18. Drlica K., Malik M., Kerns R.J., Zhao X.: Quinolone-mediated bacterial death. Antimicrob. Agents Chemother. 52, 385–392 (2008)

19. Drlica K., Hiasa H., Kerns R., Malik M., Mustaev A., Zhao X.: Quinolones: action and resistance updated. Curr. Top. Med. Chem. 9, 981–998 (2009)

20. European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net), www.ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database (22.05.2017)

21. European Centre for Disease Prevention and Control. Surveillance Atlas of Infectious Diseases, http://ecdc.europa.eu/en/healthtopics/antimicrobial-resistance-and-consumption/Pages/antimicrobial-resistance-and-anitmicrobial-consumption.asp (22.05.2017)

22. Emmerson A.M., Jones A.M.: The quinolones: decades of development and use. J. Antimicrob. Chemother. 51, 13–20 (2003)

23. Ferjani S., Saidani M., Amine F.S., Boutiba-Ben Boubaker I.: Prevalence and characterization of plasmid-mediated quinolone resistance genes in extended-spectrum β-lactamase-producing Enterobacteriaceae in a Tunisian hospital. Mikrob. Drug Resist. 21, 158–166 (2015)

24. Fihman V., Lartigue M.F., Jacquier H., Meunier F., Schnepf N., Raskine L., Riahi J., Sanson-le Pors M.J., Berçot B.: Appearance of aac(6’)-Ib-cr gene among extender-spectrum β-lactamase-producing Enterobacteriaceae in a French hospital. J. Infect. 56, 454–459 (2008)

25. Fonseca E.L., Vincente A.C.: Epidemiology of qnrVC allels and emergence out of the Vibrionaceae family. J. Med. Microbiol. 62, 1628–1630 (2013)

26. Guillard T., Grillon A., de Champs C., Cartier C., Madoux J., Lozniewski A., Berçot B., Riahi J., Vernet-Garnier V., Cambau E.: Mobile insertion cassets as a source of qnrD mobilization onto small non-transmissible plasmids in Proteeae. Plos One, 9, e87801 (2014)

27. Hansen L.H., Johannesen E., Burmølle M., Sørensen A.H., Sørensen S.J.: Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob. Agents Chemother. 48, 3332–3337 (2004)

28. Hansen L.H., Jensen L.B., Sørensen H.I., Sørensen S.J.: Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J. Antimicrob. Chemother. 60, 145–147 (2007)

29. Hata M., Suzuki M., Matsumoto M., Takahashi M., Sato K., Ibe S., Sakae K.: Cloning of novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob. Agents Chemother. 49, 801–803 (2005)

30. Hooper D.C.: Mechanisms of fluoroquinolone resistance. Drug Resistance Updates, 2, 38–55 (1999)

31. Hooper D.C.: New uses for new and old quinolones and challenge of resistance. Clin. Infect. Dis. 30, 234–254 (2000)

32. Hooper D.C.: Emerging mechanisms of fluoroquinolones resistance. Emerging Infect. Dis. 7, 337–341 (2001)

33. Hooper D.C.: Efflux pumps and nosocomial antibiotic resistance: a primer for hospital epidemiologists. Clin. Infect. Dis. 40, 1811–1817 (2005)

34. Hooper D.C., Jakoby G.A.: Mechanisms of drug resistance: quinolone resistance. Ann. N. Y. Acad. Sci. 1354, 12–31 (2015)

35. Jakoby GA.: Mechanisms of resistance to quinolones. Clin. Infect. Dis. 41, 120-126 (2005)

36. Jacoby G.A., Walsh K.E., Mills D.M., Walker V.J., Oh H., Robicsek A., Hooper D.C.: qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob. Agents Chemother. 50, 1178–1182 (2006)

37. Jacoby G., Cattoir V., Hooper D., Martínez-Martínez L., Nordmann P., Pascual A., Poirel L., Wang M.: qnr gene nomenclature. Antimicrob. Agents Chemother. 52, 2297–2299 (2008)

38. Jacoby G.A., Griffin C.M., Hooper D.C.: Citrobacter spp. As a source of qnrB alleles. Antimicrob. Agents Chemother. 55, 4979–4984 (2011)

39. Jacoby G.A., Hooper D.C.: Phylogenetic analysis of chromosomally determined Qnr and related proteins. Antimicrob. Agents Chemother. 57, 1930–1934 (2013)

40. Jacoby G.A., Strahilevitz J., Hooper D.C.: Plasmid-media-ted quinolone resistance. Microbiol. Spectr. 2, PLAS-0006-2013 (2014)

41. Jiang Y., Zhou Z., Qian Y., Wei Z., Yu Y., Hu S., Li L.: Plasmid-mediated quinolone resistance determinants qnr and aac(6’)-Ib-cr in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J. Antimicrob. Chemother. 61, 1003–1006 (2008)

42. Jlili Nel-H., Réjiba S., Smaoui H., Guillard T., Chau F., Kechrid A., Cambau E.: Trend of plazmid-mediated quinolone resistance genes at the Children’s Hospital in Tunisia. J. Med. Microbiol. 63, 195–202 (2014)

43. Karisik E., Ellington M.J., Pike R., Warren R.E., Livermore D.M., Woodford N.: Molecular characterization of plasmids encoding CTX-M-15 β-lactamases from Escherichia coli strains in the United Kingdom. J. Antimicrob. Chemother. 58, 665–668 (2006)

44. Kim E.S., Jeong J.Y., Jun J.B., Choi S.H., Lee S.O., Kim M.N., Woo J.H., Kim Y.S.: Prevalence of aac(6’)-Ib-cr encoding a ciprofloxacin-modifying enzyme among Enterobacteriaceae blood isolates in Korea. Antimicrob. Agents Chemother. 53, 2643–2645 (2009)

45. Kim H.B., Park C.H., Kim C.J., Kim E.C., Jacoby G.A., Hooper D.C.: Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob. Agents Chemother. 53, 639–645 (2009)

46. Kim H.B., Wang M., Park C.H., Kim E.C., Jacoby G.A., Hooper D.C.: oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob. Agents Chemother. 53, 3582–3584 (2009)

47. Li L., Liu Y. i wsp.: Spread of oqxAB in Salmonella enterica serotype Typhimurium predominantly by IncHI2 plasmids.
J. Antimicrob. Chemother. 68, 2263–2268 (2013)

48. Ma J., Wang M. i wsp.: High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6’)-Ib-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. Antimicrob. Agents Chemother. 53, 519–524 (2009)

49. Machado E., Coque T.M., Cantón R., Baquero F., Sousa J.C., Peixe L.: Dissemination in Portugal of CTX-M-15, OXA-1, and TEM-1-producing Enterobacteriaceae strains containing the aac(6’)-Ib-cr gene, which encodes an aminoglycoside- and fluroquinolone-modifying enzyme. Antimicrob. Agents Chemother. 50, 3220–3221 (2006)

50. Martínez-Martínez L., Pascual A., Jacoby G.A.: Quinolone resistance from a transferable plasmid. Lancet, 351, 797–799 (1998)

51. Martínez-Martínez L., Pascual A., Garcia I., Tran J., Jacoby G.A.: Interaction of plasmid and host quinolone resistance. J. Antimicrob. Chemother. 51, 1037–1039 (2003)

52. Mazzariol A., Kocsis B., Koncan R., Kocsis E., Lanzafame P., Cornaglia G.: Description and plasmid characterization of qnrD determinants in Proteus mirabilis and Morganella morganii. Clin. Microbiol. Infect. 18, E46–48 (2012)

53. Nordmann P., Poirel L.: Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J. Antimicrob. Chemother. 56, 463–469 (2005)

54. Park C.H., Robicsek A., Jacoby G.A., Sahm D., Hooper D.C.: Prevalence in the United States of aac(6’)-Ib-cr encodinga ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 50, 3953–3955 (2006)

55. Park K.S., Kim M.H., Park T.S., Nam Y.S., Lee H.J., Suh J.T.: Prevalence of the plasmid-mediated quinolone resistance genes, aac(6’)-Ib-cr, qepA, and oqxAB in clinical isolates of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in Korea. Ann. Clin. Lab. Sci. 42, 191–197 (2012)

56. Perez F., Bonomo R.A.: OqxAB, a quinolone and olaquindox efflux pump, is widely distributed among multidrug-resistant Klebsiella pneumoniae isolates of human origin. Antimicrob. Agents Chemother. 57, 4602–4603 (2013)

57. Périchon B., Courvalin P., Galimand M.: Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob. Agents Chemother. 51, 2464–2469 (2007)

58. Piddock L. J.: Mechanisms of fluoroquinolone resistance: an update1994–1998. Drugs, 58, 11–18 (1999)

59. Piekarska K., Wołkowicz T., Zacharczuk K., Rzeczkowska M., Chróst A., Bareja E., Olak M., Gierczyński R.: Co-existence of plasmid-mediated quinolone resistance determinants and mutations in gyrA and parC among fluoroquinolone-resistant clinical Enterobacteriaceae isolated in tertiary hospital in Warsaw, Poland. Int. J. Antimicrob. Agents, 45, 238–243 (2015)

60. Pitout J.D., Wei Y., Church D.L., Gregson D.B.: Surveillance for plasmid-mediated quinolone resistance determinants in Enterobacteriaceae within the Calgary Health Region, Canada: the emergence of aac(6’)-Ib-cr. J. Antimicrob. Chemother. 61, 999–1002 (2008)

61. Poirel L., Liard A., Rodriguez-Martinez J.M., Nordmann P.: Vibronaceae as a possible source of Qnr-like quinolone resistance determinants. J. Antimicrob. Agents. 56, 1118–1121 (2005)

62. Poirel L., Rodriguez-Martinez J.M., Mammeri H., Liard A., Nordmann P.: Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob. Agents Chemother. 49, 3523–3525 (2005)

63. Poirel L., Cattoir V., Nordmann P.: Plasmid-mediated quinolone resistance; interactions between humans, animal, and environmental ecologies. Front. Microbiol. 3, 24 (2012)

64. Pons M.J., Gomes C., Ruiz J.: qnrVC, a new transferable Qnr-like family. Enferm. Infect. Microbiol. Clin. 31, 191–192 (2013)

65. Poole K.: Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 56, 20–51 (2005)

66. Putman M., van Veen H.W., Konings W.N.: Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64, 672–693 (2000)

67. Redgarve L.S., Sutton S.B., Webber M.A., Piddock L.J.V.: Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in Microbiol. 22, 438–445 (2014)

68. Robicsek A., Strahilevitz J., Jacoby G.A., Macielag M., Abbanat D., Park Ch.H., Bush K., Hooper D.C.: Fluoroquinolone-modifying enzyme: a new adaptation of common aminoglicoside
acetylotransferase. Nat. Med. 12, 83–88 (2006)

69. Rodríguez-Martínez J.M., Díaz de Alba P., Briales A., Machuca J., Lossa M.,Fernández-Cuenca F., Rodríguez Baño J., Martínez-Martínez L., Pascual Á.: Contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrum-β-lactamase-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 68, 68–73 (2013)

71. Rodríguez-Martínez J.M., Machuca J., Cano M.E., Calvo J., Martínez-Martínez L., Pascual A.: Plasmid-mediated quinolone resistance: two decades on. Drug Resist. Updat. 29, 13–29 (2016)

72. Ruiz E., Saenz Y., Zarazaga M., Rocha-Gracia R., Martinez-Martinez L., Arlet G., Torres C.: qnr, aac(6’)-Ib-cr and qepA genes in Escherichi coli and Klebsiella spp.: genetic environments and plasmid and chromosomal location. J. Antimicrob. Chemother. 67, 886–897 (2012)

73. Sabtcheva S., Kaku M., Saga t., Ishii Y., Kantardjiev T.: High prevalence of the aac(6’)-Ib-cr gene and its dissemination among Enterobacteriaceae isolates by CTX-M-15 plasmid in Bulgaria. Antimicrob. Agents Chemother. 53, 335–336 (2009)

74. Saga T., Sabtcheva S., Mitsutake K., Ishii Y., Tateda K., Yamaguchi K., Kaku M.: Characterization of qnrB-like genes in Citrobacter species of the American Type Culture Collection. Antimicrob. Agents Chemother. 57, 2863–2866 (2013)

75. Sánchez M.B., Rodríguez- Martínez J.M., Martínez-Martínez L., Martínez J. L.: Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of novel family of Qnr determinants. BMC Microbiol. 8, 148–161 (2008)

76. Sato T., Yokota S.-I., Uchida I., Okubo T., Usui M., Kusumoto M., Akiba M., Fujii N., Tamura Y.: Fluoroquinolone resistance mechanisms in an Escherichi coli isolate, HUE1, without quinolone resistance – determining region mutations. Front. Microbiol. 4, 125 (2013)

77. Silva-Sánchez J., Cruz-Trujillo E., Barrios H., Reyna-Flores F., Sánchez-Pérez A., Bacterial Resistance Consortium, Garza-Ramos U.: Characterization of plasmid-mediated quinolone resistance (PMQR) genes in extended-spectrum β-lactamase-producing Enterobacteriaceae pediatric clinical isolates in Mexico. PLoS One, 17, 8:e77968 (2013)

78. Soge O.O., Adeniyi B.A., Roberts M.C.: New antibiotic resistance genes associated with CTX-M plasmids from uropathogenic Nigerian Klebsiella pneumoniae. J. Antimicrob. Chemother. 58, 1048–1053 (2006)

79. Strahilevitz J., Engelstein D., Adler A., Temper V., Moses A.E., Block C., Robicsek A.: Changes in qnr prevalence and fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae and Enterobacter spp. collected from 1990 to 2005. Antimicrob. Agents Chemother. 51, 3001–3003 (2007)

80. Strahilevitz J., Hooper D.C.: Dual targeting of topoisomerase IV and gyrase to reduce mutant selection: direct testing of the paradigm by using WCK-1734, a New fluoroquinolone, and ciprofloxacin. Antimicrob. Agents Chemother. 49, 1949–1956 (2005)

81. Strahilevitz J., Jacoby G.A., Hooper D.C., Robicsek A.: Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 22, 664–689 (2009)

82. Szmolka A., Fortini D., Villa L., Carattoli A., Anjum M.F., Nagy B.: First report on IncN plasmid-mediated quinolone resistance gene qnrS1 in porcine Escherichia coli in Europe. Mikrob. Drug Resist. 17, 567–573 (2011)

83. Veldman K., Aarestrup F.M., i wsp.: International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. J. Antimicrob. Chemother. 66, 1278–1286 (2011)

84. Wang M., Guo Q., Xu X., Wang X., Ye X., Wu S., Hooper D.C., Wang M.: New plasmid-mediated quinolone resistance gene, qnrC, found in clinical isolate of Proteus mirabilis. Antimicrob. Agents Chemother. 53, 1892–1897 (2009)

85. Wasyl D.: Prevalence and characterization of quinolone resistance mechanisms in commensal Escherichia coli isolated from slaughter animals in Poland, 2009–2012. Mikrob. Drug Resist. 20: 544–549 (2014)

86. Webber M.A., Piddock L.J.: Absence of mutations in marRAB or soxRS in acrB-overexpressing fluoroquinolone-resistant clinical and veterinary isolates of Escherichia coli. Antimicrob. Agents Chemother. 45, 1550–1552 (2001)

87. Willmott C.J., Maxwell A.: A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex. Antimicrob. Agents Chemother. 37, 126–127 (1993)

88. Yamane K., Wachino J., Suzuki S., Kimura K., Shibata N., Kato H., Shibayama K., Konda T., Arakawa Y.: New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichi coli clinical isolate. Antimicrob. Agents Chemother. 51, 3354–3360 (2007)

89. Yamane K., Wachino J., Suzuki S., Arakawa Y.: Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob. Agents Chemother. 52, 1564–1566 (2008)

90. Yang J., Lu Y., Li J., Ma Y., Hu C., Jin S., Ye L., Cui S.: Characterization of clinical Escherichia coli isolates from China containing transferable quinolone resistance determinants. J. Antimicrob. Chemother. 65, 453–459 (2010)

91. Yoshida H., Bogaki M., Nakamura M., Nakamura S.: Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 34, 1271–1272 (1990)

92. Yoshida H., Bogaki M., Nakamura M., Yamanaka L.M., Nakamura S.: Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob. Agents Chemother. 35, 1647–1650 (1991)

93. Yuan J., Xu X., Guo Q., Zhao X., Ye X., Guo Y., Wang M.: Prevalence of the oqxAB gene complex in Klebsiella pneumoniae and Escherichia coli clinical isolates. J. Antimicrob. Chemother. 67, 1655–1659 (2012)

94. Zhang R., Ichijo T., Huang Y.L., Cai J.C., Zhou H.W., Yamaguchi N., Nasu M., Chen G.X.: High prevalence of qnr and aac(6’)-Ib-cr genes in both water-borne environmental bacteria and clinical isolates of Citobacter freundii in China. Microbes Environ. 27, 158–163 (2011)

95. Zhang S., Liu Y.H. i wsp.: Prevalence and plasmid characterization of the qnrD determinant in Enterobacteriaceae isolated from animal, retail meat products, and humans. Microb. Drug Resist. 19, 331–335 (2013)

96. Zhao X., Xu X., Zhu D., Ye X., Wang M.: Decreased quinolone susceptibility in high percentage of Enterobacter cloaceae clinical isolates caused only by Qnr determinants. Diagn. Microbiol. Infect. Dis. 67, 110–113 (2010)

EXTRA FILES

COMMENTS