IMPLEMENTATION OF WHOLE GENOME SEQUENCING FOR BACTERIA GENOTYPING

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

19
Reader(s)
57
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 57 , ISSUE 2 (September 2018) > List of articles

IMPLEMENTATION OF WHOLE GENOME SEQUENCING FOR BACTERIA GENOTYPING

Daria Artyszuk / Tomasz Wołkowicz *

Keywords : genotyping, molecular techniques, next-generation sequencing, whole genome analysis

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 57, Issue 2, Pages 179-193, DOI: https://doi.org/10.21307/PM-2018.57.2.179

License : (CC BY-NC-ND 4.0)

Published Online: 23-May-2019

ARTICLE

ABSTRACT

The molecular typing methods are used to identify specific genetic targets and relationships between microbial isolates. In order to understand clonal relatedness between the microbial strains, classic phenotypic methods are used in line with modern molecular biology techniques. The development of genetics, especially new techniques like molecular typing, have revolutionized microbial research. After 1970, the development techniques, especially those referring to DNA sequencing, established molecular microbiology, thus providing modern tools for the identification of sources and routes of infection. Whole genome sequencing and other high-throughput typing methods are becoming increasingly popular and, thanks to their high resolution, they are ideal tools for comparative analysis of bacteria. This study reviews the methods most commonly used in the molecular typing of bacteria, including those which are in the development stage and may be the main tool in microbial typing in the future.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Aanensen D.M., Spratt B.G.: The multilocus sequence typing network: mlst.net. Nucleic Acids Res. 33, 728–733 (2005)

2. Adzitey F., Huda N., Ali G.R.R.: Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks. 3 Biotech. 3, 97–107 (2013)

3. Applied Maths: Five more wgMLST schemes available, 19.05. 2017, http://www.applied-maths.com/news/five-more-wgmlst-schemes-available (10.10.2017)

4. Applied Maths: Six more wgMLST schemes available, 30.11.2016, http://www.applied-maths.com/news/six-more-wgmlst-schemes-available (10.10.2017)

5. Baj J., Markiewicz Z. Biologia molekularna bakterii. Wyd. Naukowe PWN, Warszawa, 2015, s. 11.

6. Belkum A.: Tracing isolates of bacterial species by multilocus variable numer of tandem repeat analysis (MLVA). FEMS Immunol. Med. Microbiol. 49, 22–27 (2007)

7. Brown T.A. Genomy. Wydawnictwo Naukowe PWN, Warszawa, 2012, s. 121.

8. Brzostek A., Dziadek J.: Molekularne metody genotypowania prątków gruźlicy w dochodzeniach epidemiologicznych transmisji zakażeń. Pneumonol. Alergol. Pol. 80, 193–197 (2012)

9. Canard B., Sarfati R.S.: DNA polymerase fluorescent substrates with reversible 3’-tags. Gene, 148, 1–6 (1994)

10. Centers for Disease Control and Prevention: Multiple locus variable-number tandem repeat analysis (MLVA), https://www.cdc.gov/pulsenet/pathogens/mlva.html (10.10.2017)

11. Chen Y., Zhang W., Knabel S.J.: Multi-virulence-locus sequence typing clarifies epidemiology of recent listeriosis outbreaks in the United States. J. Clin. Microbiol. 43, 5291–5294 (2005)

12. Compare: About Compare, http://www.compare-europe.eu/about (10.10.2017)

13. Databases hosted on PubMLST, https://pubmlst.org/databases/ (10.10.2017)

14. Edwards A., Debbonaire A.R., Sattler B., Mur L.A.J., Hodson A.J.: Extreme metagenomics using Nanopore DNA sequencing: a field report from Svalbard, 78°N. BioRxiv, 073965 (2016)

15. Edwards D.J., Holt K.E.: Beginner’s guide to comparative bacterial genome analysis using next-generation sequence data. Microb. Inform. Exp. DOI: 10.1186/2042-5783-3-2 (2013)

16. European Centre for Disease Prevention and Control: Expert Opinion on the introduction of next-generation typing methods for food- and waterborne diseases in the EU and EEA. Stockholm: ECDC, DOI: 10.2900/453641 (2015)

17. European Centre for Disease Prevention and Control: Expert opinion on whole genome sequencing for public health surveillance. Stockholm: ECDC, DOI: 10.2900/12442 (2016)

18. European Centre for Disease Prevention and Control: Laboratory standard operating procedure for MLVA of Salmonella enterica serotype Typhimurium. Stockholm: ECDC, DOI:10.2900/56328 (2011)

19. Fleischmann R.D., Venter J.C. i wsp. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269, 496–512 (1995)

20. Fraser C.M., Venter J.C. i wsp.: The minimal gene complement of Mycoplasma genitalium. Science, 270, 397–403 (1995)

21. Frey K.G., Herrera-Galeano J.E., Redden C.L., Luu T.V., Servetas S.L., Mateczun A.J., Mokashi V.P., Bishop-Lilly K.A.: Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood. BMC Genomics, DOI: 10.1186/1471-2164-15-96 (2014)

22. Gierczyński R., Golubov A., Neubauer H., Pham J.N., Rakin A.: Development of multiple-locus variable-number tandem-repeat analysis for Yersinia enterocolitica subsp. Palearctic and its application to bioserogroup 4/O3 subtyping. J. Clinic. Microbiol. 45, 2508–2515 (2007)

23. Illumina: An introduction to Illumina next-generation sequencing technology for microbiologists, https://www.illumina.com/content/dam/illumina-marketing/documents/products/sequencing_introduction_microbiology.pdf (10.10.2017)

24. Illumina: An introduction to next-generation sequencing technology, https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf (10.10.2017)

25. Illumina: Nextera DNA library preparation kits, https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_nextera_dna_sample_prep.pdf (10.10.2017)

26. Kotetishvili M., Stine O.C., Chen Y., Kreger A., Sulakvelidze A., Sozhamannan S., Morris Jr.J.G.: Multilocus sequence typing has better discriminatory ability for typing Vibrio cholerae than does pulsed-field gel electrophoresis and provides a measure of phylogenetic relatedness. J. Clinic. Microbiol. 41, 2191–2196 (2003)

27. Kotowska M., Zakrzewska-Czerwińska J.: Kurs szybkiego czytania DNA – nowoczesne techniki sekwencjonowania. Biotechnologia, 4, 24–38 (2010)

28. Larsson J.T., Torpdahl M., Petersen R.F., Sorensen G., Lindstedt B.A., Nielsen E.M.: Development of a new nomenclature for Salmonella Typhimurium multilocus variable numer of tandem repeats analysis (MLVA). Euro Surveill. DOI: https://doi.org/10.2807/ese.14.15.19174-en (2009)

29. Leekitcharoenphon P., Nielsen E.M., Kaas R.S., Lund O., Aarestrup F.M.: Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PLoS ONE 9, e87991, (2014)

30. Li W., Raoult D., Fournier P.E.: Bacterial strain typing in the genomic era. FEMS Microbiol. Rev. 33, 892–916 (2009)

31. Lienemann T., Kyyhkynen A., Halkilahti J., Haukka K., Siito-nen A.: Characterization of Salmonella Typhimurium isolates from domestically acquired infections in Finland by phage typing, antimicrobial susceptibility testing, PFGE and MLVA. BMC Microbiol. DOI: 10.1186/s12866-015-0467-8 (2015)

32. Lindstedt B.A., Åkerström S. i wsp.: Use of multilocus variable-number tandem repeat analysis (MLVA) in eight European countries, 2012. Euro Surveill. DOI: 10.2807/ese.18.04.20385-en (2013)

33. MacCannell D.: Bacterial strain typing. Clin. Lab. Med. 33, 629–650 (2013)

34. Madoui M., Engelen S., Cruaud C., Belser C., Bertrand L., Alberti A., Lemainque A., Wincker P., Aury J.M.: Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics, DOI: 10.1186/s12864-015-1519-z (2015)

35. Maiden M.C.J., Spratt B.G. i wsp.: Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA, 95, 3140–3145 (1998)

36. Małek W., Wdowiak-Wróbel S., Kalita M., Szlachetka M.: Dylematy z koncepcją i definicją gatunku bakteryjnego. Post. Mikrobiol. 47, 177–182 (2008)

37. Margulies M., Rothberg J.M. i wsp.: Genome sequencing in open microfabricated high density picoliter reactors. Nature, 437, 376–380 (2005)

38. Maxam A.M., Gilbert W.: A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74, 560–564 (1977)

39. MLST, http://www.mlst.net/ (10.10.2017)

40. Nadon C., Walle I.V., FWD-NEXT Expert Panel i wsp.: PulseNet International: Vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance. Euro Surveill., DOI: http://dx.doi.org/10.2807/1560-7917.ES.2017.22.23.30544 (2017)

41. NASA: Sequencing the station: investigation aims to identify unknown microbes in space, 25.04.2017, https://www.nasa.gov/mission_pages/station/research/news/genes_in_space3 (10.10.2017)

42. NCBI: Genome, https://www.ncbi.nlm.nih.gov/genome (10.10.2017)

43. Oxford Nanopore Technologies: How it works, https://nanoporetech.com/how-it-works (10.10.2017)

44. Oxford Nanopore Technologies: Portable, real-time biological analyses,vhttps://nanoporetech.com/products/minion (10.10.2017)

45. Oxford Nanopore Technologies: VolTRAX, https://nanoporetech.com/products/voltrax (10.10.2107)

46. Pareek C.S., Smoczynski R., Tretyn A.: Sequencing technologies and genome sequencing. J. Appl. Genetics, 52, 413–435 (2011)

47. Pareek C.S.: An overview of next-generation genome sequencing platforms (w) Next‑generation Sequencing: Current Technologies and Applications. red. Xu J., Caister Academic Press, 2014, s. 1–24

48. Prober J.M., Trainor G.L., Dam R.J., Hobbs F.W., Robertson C.W., Zagursky R.J., Cocuzza A.J., Jensen M.A., Baumeister K.: A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science, 238, 336–341 (1987)

49. Ronaghi M., Uhlén M., Nyrén P.: A sequencing method based on real-time pyrophosphate. Science, 281, 363–365 (1998)

50. Sabat A.J., Budimir A., Nashev D., Sá-Leão R., van Dijl J.M., Laurent F., Grundmann H., Friedrich A.W.: Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill. DOI: https://doi.org/10.2807/ese.18.04.20380-en (2013)

51. Salipante S.J., SenGupta D.J., Cummings L.A., Land T.A., Hoogestraat D.R., Cookson B.T.: Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J. Clin. Microbiol. 53, 1072–1079 (2015)

52. Sanger F., Nicklen S., Coulson A.R.: DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74, 5463–5467 (1977)

53. Singh A., Goering R.V., Simjee S., Foley S.L., Zervos M.J.: Application of molecular techniques to the study of hospital infection. Clin. Microbiol. Rev. 19, 512–530 (2006)

54. Struelens M.J. and the Members ESGEM, ESCMID: Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin. Microbiol. Infect. 2, 2–11 (1996)

55. Tenover F.C., Arbeit R.D., Goering R.V., Mickelsen P.A., Murray B.E., Persing D.H., Swaminathan B.: Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33, 2233–2239 (1995)

56. Urwin R., Maiden M.C.J.: Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. 11, 479–487 (2003)

EXTRA FILES

COMMENTS