ANTIMICROBIAL ACTIVITY OF LIPOPEPTIDES

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

24
Reader(s)
98
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 57 , ISSUE 3 (April 2018) > List of articles

ANTIMICROBIAL ACTIVITY OF LIPOPEPTIDES

Paulina Czechowicz * / Joanna Nowicka

Keywords : antimicrobial activity, lipopeptides, peptides

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 57, Issue 3, Pages 213-227, DOI: https://doi.org/10.21307/PM-2018.57.3.213

License : (CC BY-NC-ND 4.0)

Published Online: 23-May-2019

ARTICLE

ABSTRACT

The constantly growing number of multidrug-resistant bacterial strains prompts the search for alternative treatments. Synthetic peptides based on natural antimicrobial peptides, also known as antimicrobial lipopeptides, can become a promising group of “drugs” to fight multi-resistant bacteria. The present paper discusses the origins of synthetic lipopeptides, their classification and antimicro-
bial properties.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Avrahami D., Shai Y.: A new group of antifungal and antimicrobial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J. Biol. Chem. 279, 12277–12285 (2004)

2. Avrahami D., Shai Y.: Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acid-
containing antimicrobial peptides: A plausible mode of action. Biochemistry-US, 42, 14946–14956 (2003)

3. Avrahami D., Shai Y.: Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly and cell selectivity. Biochemistry-US, 41, 2254–2263 (2002)

4. Azmi F, Elliot A.G., Marasini N., Ramu S., Ziora Z., Kavanagh A.M., Blaskovich M.A.T., Cooper M.A., Skwarczynski M., Toth I.: Short cationic lipopeptides as effective antibacterial agents: Design, physicochemical properties and biological evaluation. Bioorgan. Med. Chem. 24, 2235–2241 (2016)

5. Bahar A.A., Ren D.: Antimicrobial Peptides. Pharmaceuticals, 6, 1543–1575 (2013)

6. Bai Y., Liu S.P., Jiang P., Zhou L., Li J., Tang C., Verma C., Mu Y.G., Beuerman R.W., Pervushin K.: Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin. Biochemistry-US, 48, 7229–7239 (2009)

7. Bai Y., Liu S.P., Li J.G., Lakshminarayan R., Sarawathi P., Tang C., Ho D.C., Verma C., Beuerman R.W., Pervushin K.: Progressive Structuring of a Branched Antimicrobial Peptide on the Path to the Inner Membrane Target. J. Biol. Chem. 287, 26606–26617 (2012)

8. Barańska-Rybak W., Pikuła M., Dawgul M., Kamysz W., Trzonkowski P., Roszkiewicz J.: Safety profile of antimicrobial peptides: Camel, Citropin, Protegrin, Temporin A and lipopetide on HaCaT keratinocytes. Acta. Pol. Pharm. 70, 795–801 (2013)

9. Barchiesi F., Giacometti A., Cirioni O., Arzeni D., Silvestri C., Kamysz W., Abbruzzetti A., Riva A., Kamysz E., Scalise G.: In vitro activity of the synthetic lipopeptide PAL-Lys-Lys-NH(2) alone and in combination with antifungal agents against clinical isolates of Cryptococcus neoformans. Peptides, 28, 1509–1513 (2007)

10. Bhunia A., Mohanram H., Domadia P.N., Torres J., Bhattacharjya S.: Designed beta-Boomerang Antiendotoxic and Antimicrobial peptides. Structures and activities in lipopolysaccharide, J. Biol. Chem. 284, 21991–22004 (2009)

11. Błażewicz I., Jaśkiewicz M., Piechowicz L., Kamysz W., Nowicki R., Barańska-Rybak W.: Rola peptydów przeciwdrobnoustrojowych w wybranych dermatozach. Przegl. Dermatol. 103, 227–232 (2016)

12. Catiau L., Traisnel J., Delval-Dubois V., Chihib N.E., Guillochon D., Nedjar-Arroume N.: Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides, 32, 633–638 (2011)

13. Cirioni O., Scalise G. i wsp.: The lipopeptides Pal-Lys-Lys-NH(2) and Pal-Lys-Lys soaking alone and in combination with intraperitoneal vancomycin prevent vascular graft biofilm in a subcutaneous rat pouch model of staphylococcal infection. Peptides, 28, 1299–1303 (2007)

14. Citterio L., Franzyk H., Palarasah Y., Andersen T.E., Mateiu R.V., Gram L.: Improved in vitro evaluation of novel antimicrobials: potential synergy between human plasma and antibacterial peptidomimetics, AMPs and antibiotics against human pathogenic bacteria, Res. Microbiol. 167, 72–82 (2016)

15. Cochrane A.S, Findlay B., Bakhtiary A., Acedo J.Z., Rodriguez-Lopez E.M, Mercier P., Vederas J.C.: Antimicrobial lipopeptide tridecaptin A1 selectivelybinds to Gram-negative lipid II. P. Natl. Acad. Sci. USA, 113, 11561–11566 (2016)

16. Dawgul M., Barańska-Rybak W., Greber K., Guzik Ł., Nowicki R., Łukasiak J., Kamysz W.: Aktywność przeciwbakteryjna krótkich lipopeptydów wobec klinicznych szczepów Staphylococcus aureus. Alergia Astma Immunologia, 16, 31–36 (2001)

17. Dawgul M., Barańska-Rybak W., Bielińska S., Nowicki R., Kamysz W.: Wpływ peptydów przeciwdrobnoustrojowych na biofilm Candida. Alergia Astma Immunologia, 15, 220–225 (2010)

18. Dawgul M., Maciejewska M., Jaskiewicz M., Karafova A., Kamysz W.: Antimicrobial peptides as potential tool to fight bacterial biofilm, Acta. Pol. Pharm. 71, 39–47 (2014)

19. Eckhard L.H., Houri-Haddad Y., Sol A., Zeharia R., Shai Y., Beyth S., Domb A.J., Bachrach G., Beyth N.: Sustained release of Antibacterial Lipopeptides from Biodegradable Polymers against Pral Pathogens, Plos One, 11, e0162537 (2016)

20. Fenyou She, Nimmagadda A., Teng P., Su M., Zuo X.B., Cai J.F.: Helical 1:1 alpha/Sulfono-gamma-AA Heterogeneous Peptides with Antimicrobial Activity, Biomacromolecules, 17, 1854–1859 (2016)

21. Ghosh C., Konai M.M., Sarkar P., Samaddar S., Haldar J.: Design simple lapidates lysines: bifurcation imparts selective antimibrobial activity. Chem. Med. Chem., 11, 2367–2371 (2016)

22. Giuliani A., Rinaldi A.C.: Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell. Mol. Life Sci. 68, 2255–2266 (2011)

23. Goldberg K. Sarig H., Zakoon F., Espand R.F., Espand R.M., Mor A.: Sensitization of Gram-negative bacteria by targeting the membrane potential. Faseb J. 27, 3818–3826 (2013)

24. Greber K.E., Dawgul M., Kamysz W., Sawicki W.: Cationic Net Charge and Counter Ion Type as Antimicrobial Activity Determinant Factors of Short Lipopeptides. Front. Microbiol. Doi: 10.3389/fmicb.2017.00123 (2017)

25. Greber K.E., Ciura K., Belka M., Kawczak P., Nowakowska J., Baczek T., Sawicki W.: Characterization of antimicrobial and hemolytic properties of short synthetic cationic lipopeptides based on QSAR/QSTR approach, Amino acids, DOI: 10.1007/s00726-017-2530-2 (2017)

26. Horn J.N., Sengillo J.D., Lin D.J., Romo T.D., Grossfield A.: Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics, BBA.-Biomembranes. 1818, 212–218 (2012)

27. Hu Y.G., Amin M.N., Padhee S., Wang R.S.E., Qiao Q., Bai G., Li Y.Q., Mathew A., Cao C.H., Cai J.F.: Lipidated peptidomimetics with improved antimicrobial activity. ACS. Med. Chem. Lett. 3, 683–686 (2012)

28. Hu Y.G., Li X.L., Sebti S.M., Chen J.D., Cai J.F.: Design and synthesis of AApeptides: a new class of peptide mimics. Bioorg. Med. Chem. Lett. 21, 1469–1471 (2011)

29. Iyer V.: A review of stapled peptides and small molecules to inhibit protein-protein interactions in cancer. Curr. Med. Chem. 23, 3025–3043 (2016)

30. The APD: The Antimicrobial Peptide Database, http://aps.unmc.edu/AP/main.php (24.02.2018)

31. Jammal J., Zakoon F., Kaneti G., Goldberg K., Mor A.: Sentsitization of Gram-negative bacteria to rifampin and OAK combinations. Sci. Rep.-UK, DOI: 10.1038/srep09216

32. Jammal J., Zaknoon F., Kaneti G., Herhkovits A.S., Mor A.: Sensitization of Gram-negative Bacilli to Host Antimicrobial Proteins, JPN. J. Infect. Dis. 215, 1599–1607 (2017)

33. Janiszewska J. Naturalne peptydy przeciwdrobnoustrojowe w zastosowaniach biomedycznych. Polimery, 59, 699–707 (2014)

34. Janiszewska J., Sowinska M., Rajnisz A., Solecka J., Lacka I., Milewski S., Urbanczyk-Lipkowska Z.: Novel dendrimeric lipopeptides with antifungal activity, Bioorg. Med. Chem. Lett. 22, 1388–1393 (2012)

35. Jansen R.O., Sandberg-Schaal A., Frimodt-Moller N., Nielsen H.M., Franzyk H.: End group modification: Efficient tool for improving activity of antimicrobial peptide analogues towards Gram-positive bacteria, Eur. J. Pharm. Biopharm. 95, 40–46 (2015)

36. Jaśkiewicz M., Neubauer D., Kamysz W.: Comparative Study on Antistaphylococcal Activity of Lipopeptides in Various Culture Media. Antibiotics, DOI:10.3390/antibiotics6030015 (2017)

37. Jenner Z.B., Crittenden C.M., Gonzales M., Brodbelt J.S., Bruns K.A.: Hydrocarbon-stapled lipopeptides exhibit selective antimicrobial activity, Biopolymers, 108, e23006 (2017)

38. Jerala R.: Synthetic lipopeptides: a novel class of anti-infectives, Expert. Opin. Inv. Drug. 16, 1159–1169 (2007)

39. Kamysz E., Barchiesi F. i wsp.: In vitro activity of the lipopeptide PAL-Lys-Lys-NH2, alone and in combination with antifungal agents, against clinical isolates of Candida spp. Peptides, 32, 99–103 (2011)

40. Kamysz E., Sikorska E., Dawgul M., Tyszkowski R., Kamysz W.: Influence of dimerization of lipopeptide Laur-Orn-Orn-Cys-NH2 and N-terminal peptide of human lactoferricin on biological activity. Int. J. Pept. Res. Ther. 21, 39–46 (2015)

41. Kamysz W.: Projektowanie, synteza i badania peptydów przeciwdrobnoustrojowych. Akademia Medyczna. Gdańsk, 2007

42. Kaur P., Li Y.Q., Cai F.J., Song L.K.: Selective membrane disruption mechanism of an antibacterial gamma-AApeptide defined by EPR spectroscopy. Biophys. J. 110, 1789–1799 (2016)

43. Koh J.J., Lin S.M., Beuerman R.W., Liu S.P.: Recent advances in synthetic lipopeptides as anti-microbial agents: design and synthetic approaches, Amino acids, 49, 1653–1677 (2017)

44. Kozińska A., Sitkiewicz I.:. „Nowe” i „Stare” antybiotyki – mechanizmy działania i strategie poszukiwania leków przeciwbakteryjnych. Kosmos, 66, 109–124 (2017)

45. Lakshminarayanan R., Beuerman R.W. I wsp.: Branched peptide, B2088, disrupts the supramolecular organization of lipopolysaccharides and sensitizes the Gram-negative bacteria, Sci. Rep.-UK, 6, DOI: 10.1038/srep25905 (2016)

46. Laverty G., McLaughlin M., Shaw C., Gorman S.P., Gilmore B.F.: Antimicrobial Activity of Short, Synthetic Cationic Lipopeptides, Chem. Biol. Drug. Des. 75, 563–569 (2010)

47. Li J., Koh J.J, Liu S., Lakshminarayanan R., Verma C.S, Beuerman R.W.: Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front. Neurosci. Doi: 10.3389/fnins.2017.00073 (2017)

48. Li J.G., Liu S.P., Lakshminarayanan R., Bai Y., Pervushin K., Verma C., Beuerman R.W.: Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability, BBA. – Biomembranes, 1828, 1112–1121 (2013)

49. Lin D.J., Grossfield A.: Thermodynamics of antimicrobial lipopeptide binding to membranes: origins of affinity and selectivity. Biophys. J. 107, 1862–1872 (2014)

50. Lohan S., Cameotra S.S., Bisht G.S.: Systematic study of non-natural short cationic lipopeptides as novel broad-spectrum antimicrobial agents. Chem. Biol. Drug. Des. 82, 557–566 (2013)

51. Majerle A., Kidric J. Jerala R.: Enhancement of antibacterial and lipopolysaccharide binding activities of a human lactoferrin peptide fragment by the addition of acyl chain. J. Antimicrob. Chemoth. 51, 1159–1165 (2003)

52. Mak P., Pohl J., Dubin A., Reed M.S., Bowers S.E., Fallon M.T., Shafer W.M.: The increased bactericidal activity of a fatty acid-modified synthetic antimicrobial peptide of human cathepsin G correlates with its enhanced capacity to interact with model membranes. Int. J. Antimicrob. Ag. 21, 13–19 (2003)

53. Makovitzky A., Avrahami D., Shai Y.: Ultrashort antibacterial and antifungal lipopeptides. P. Natl. Acad. Sci. USA, 103, 15997–16002 (2006)

54. Makovitzky A., Baram J. Shai Y.: Antimicrobial lipopolypeptides composed of palmitoyl di- and tricationic peptides: in vitro and in vivo activities, self-assembly to nanostructures and plausible mode of action. Biochemistry-US, 47, 10630–10636 (2008)

55. Malina A., Shai Y.: Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of cationic biologically inactive peptide, Biochem. J. 390, 695–702 (2005)

56. Mangoni M.L., Shai Y.: Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action, Cell Mol. Life Sci. 68, 2267–2280 (2011)

57. Migon D., Neubauer D., Kamysz W.: Hydrocarbon Stapled Antimicrobial Peptides. Protein J. DOI: 10.1007/s10930-018-9755-0 (2018)

58. Min K.R., Galvis A., Williams B., Rayala R., Cudic P., Ajdic D.: Antibacterial and Antibiofilm Activities of a Novel Synthetic Cyclic Lipopeptide against Cariogenic Streptococcus mutans UA159. Antimicrob. Agents. Chemother. DOI: 10.1128/AAC.00776-17 (2017)

59. Mirski T., Gryko R., Bartoszcze M., Bielwaska-Drózd A., Tyszkiewicz W.: Peptydy przeciwdrobnoustrojowe – nowe możliwości zwalczania infekcji u ludzi i zwierząt. Medycyna Wet. 67, 517–521 (2011)

60. Mishra B., Lushnikova T., Wang G.S.: Small lipopeptides possess anti-biofilm capability comparable to daptomycin and vancomycin. RSC. Adv. 5, 59758–59769 (2015)

61. Mizerska-Dudka M., Andrejko M., Kondefer-Szerszeń M.. Przeciwirusowe peptydy kationowe człowieka i owadów. Post. Mikrobiol. 50, 209–216 (2011)

62. Mohanram H., Bhattacharjya S.: ‘Lollipop’-shaped helical structure of a hybrid antimicrobial peptide of temporin B – lipopolysaccharide binding motif and mapping cationic residues in antibacterial activity, BBA. – Gen. Subjects. 1860, 1362–1372 (2016)

63. Mohanram H., Bhattacharjya S.: beta-Boomerang Antimicrobial and antiendotoxic peptides: lipidation and disulfide bond effects on activity and structure. Pharmaceuticals (Basel, Switzerland), 7, 482–501 (2014)

64. Nasompag S., Dechsiri P., Hongsing N., Phonimdaeng P., Daduang S., Klaynongsruang S., Camesano T.A., Patramanon R.: Effect of acyl chain length on therapeutic activity and mode of action of the C-X-KYR-NH2 antimicrobial lipopeptide. BBA. – Biomembranes, 1848, 2351–2364 (2015)

65. Nedjar-Arroume N., Dubois-Delval V., Adje E.Y., Traisnel J., Krier F., Mary P., Kouach M., Briand G., Guillochon D.: Bovine hemoglobin: an attractive source of antibacterial peptides. Peptides, 29, 969–977 (2008)

66. Niu Y.H., Cai J.F I wsp.: Lipo-gamma-AApeptides as a new class of potent and broad-spectrum antimicrobial agents. J. Med. Chem. 55, 4003–4009 (2012)

67. Omardien S., Brul S., Zaat S.A.J.: Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria. Front. Cell. Dev. Biol. Doi: 10.3389/fcell.2016.00111 (2016)

68. Oren Z., Lerman J.C., Gudmundsson G.H., Agerberth B., Shai Y.: Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem. J. 341, 501–513 (1999)

69. Padhee S., Li Y.Q., Cai J.F.: Activity of lipo-cyclic gamma-AApeptides against biofilms of Staphyloccocus epidermidis and Pseudomonas aeruginosa, Bioorg. Med. Chem. Lett. 25, 2565–2569 (2015)

70. Papo N., Oren Z., Pag U., Sahl H.G., Shai Y.: The consequence of sequence alternation of an amphipathic alpha-helical antimicrobial peptide and its diastereomers. J. Biol. Chem. 277, 33913–33921 (2002)

71. Radzishevsky I.S., Rotem S., Bourdetsky D., Navon-Venezia S., Carmeli Y., Mor A.: Impoved antimicrobial peptides based on acyl-lysine oligomers. Nat. Biotechnol. 25, 657–659 (2007)

72. Sang P., Shi Y., Teng P., Cao A.N., Xu H., Li Q., Cai J.F.: Antimicrobial AApeptides, Curr. Top. Med. Chem. 17, 1266–1279 (2017)

73. Sarig H. Livne L., Held-Kutnetsov V., Zakoon F., Ivankin A., Gidalevitz D., Mor A.: A miniature mimic of host defense peptides with systematic antibacterial efficacy. Faseb J. 24, 1904–1913 (2010)

74. Shai Y., Makovitzky A., Avrahami D.: Host defense peptides and lipopeptides: mode of action and potential candidates for the treatment of bacterial and fungal infections. Curr. Protein Pept. Sci. 7, 479–486 (2006)

75. Sikorska E., Dawgul M., Greber K., Ilowska E., Pogorzelska A., Kamysz W.: Self-assebly and interactions of short antimicrobial lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies. BBA.-Biomembranes, 1838, 2625–2634 (2014)

76. Straus S.K., Hancock R.E.W.: Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. BBA.-Biomembranes, 1758, 1215–1223 (2006)

77. Teng P., Cai J.F. I wsp.: Small Antimicrobial Agents Based on Acylated Reduced Amide Scaffold, J. Med. Chem. 59, 7877–7887 (2016)

78. Wang G.: Improved Methods for Classification, Prediction and Design of Antimicrobial Peptides. Method. Mol. Cell Biol. 1268, 43–66 (2015)

79. Wiesner J., Vilcinskas A.: Antimicrobial peptides: the ancient arm of the human immune system. Virulence, 1, 440–464 (2010)

80. Wódz K., Brzezińska-Błaszczyk E., Katelicydyny – endogenne peptydy przeciwdrobnoustrojowe. Postępy Biochemii, 61, 93–101 (2015)

81. Zdybicka-Barabas A., Stączek S., Cytryńska M.: Różnorodność peptydów przeciwdrobnoustrojowych bezkręgowców. Kosmos, 66, 563–574 (2017)

82. Zhang L.J, Gallo R.L.: Antimicrobial peptides. Curr. Biol. 26, 14–19 (2016)

83. Żyłowska M., Wyszyńska A., Jagusztyn-Krynicka E.K.: Defensysny – peptydy o aktywności przeciwbakteryjnej. Post. Mikrobiol. 50, 223–234 (2011)

EXTRA FILES

COMMENTS