Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 0079-4252
eISSN: 2545-3149





Volume / Issue / page

Related articles

VOLUME 57 , ISSUE 3 (April 2018) > List of articles


Magdalena Kizerwetter-Świda * / Dorota Chrobak-Chmiel / Magdalena Rzewuska

Keywords : antimicrobial resistance, methicillin resistance testing, Staphylococcus spp., veterinary microbiology

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 57, Issue 3, Pages 270-277, DOI:

License : (CC BY-NC-ND 4.0)

Published Online: 24-May-2019



Staphylococci are pathogenic bacteria often isolated from clinical material obtained from animals. Unlike in human medicine, in veterinary sciences various species of coagulase-positive staphylococci have been isolated from clinical specimens. In addition to Staphylococcus aureus and Staphylococcus pseudintermedius, other species are also often identified. Recently, the taxonomy of staphylococci has been updated, therefore, it is now important to recognize also the new species. Currently, coagulase-negative staphylococci are considered an important group of opportunistic pathogens. The accurate identification of species within the genus Staphylococcus is important because, according to the EUCAST and CLSI recommendations, the interpretation of the results of susceptibility testing for S. aureus and coagulase-negative staphylococci is different. Furthermore, the resistance to methicillin in S. aureus strains is detected using a cefoxitin disk, whereas in S. pseudintermedius – using an oxacillin disk. An important problem for veterinary microbiological laboratories is a limited number of unified guidelines on methodology and guidelines specifying the interpretation of the results of antibiotic susceptibility testing. The lack
of available recommendations for some antibiotics testing results in veterinary laboratories often using the guidelines established for human pathogens. There is an urgent need to harmonize the methods and develop guidelines for the interpretation of results of susceptibility testing for different bacteria, including various species of staphylococci isolated from an individual animal host.

Content not available PDF Share



1. Adkins P.R.F., Middleton J.R., Calcutt M.J., Stewart G.C., Fox L.K.: Species Identification and Strain Typing of Staphylococcus agnetis and Staphylococcus hyicus Isolates from Bovine Milk by Use of a Novel Multiplex PCR Assay and Pulsed-Field Gel Electrophoresis. J. Clin. Microbiol. 55, 1778–1788 (2017)

2. Al-Rubaye A.A., Couger M.B., Ojha S., Pummill J.F., Koon J.A., Wideman R.F. Jr, Rhoads D.D.: Genome Analysis of Staphylococcus agnetis, an Agent of Lameness in Broiler Chickens. PLoS One, 25, e0143336 (2015)

3. American Veterinary Medical Association (AVMA): Judicious therapeutic use of antimicrobials, (14.02.2018)

4. Angeletti S.: Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology.
J. Microbiol. Methods. DOI: 10.1016/j.mimet.2016.09.003 (2017)

5. Antibiotic Use Guidelines for Companion Animal Practice.
Documents/AntibioticGuidelines%20-%20v1.4_jun15.pdf (27.03.2018)

6. Barreiro J.R., Gonçalves J.L., Braga P.A., Dibbern A.G., Eberlin M.N., Veiga Dos Santos M.: Non-culture-based identification of mastitis-causing bacteria by MALDI-TOF mass spectrometry. J. Dairy Sci. 100, 2928–2934 (2017)

7. Becker K., Heilmann C., Peters G.: Coagulase-negative staphylococci. Clin. Microbiol. Rev. 27, 870–926 (2014)

8. Bemis D.A., Jones R.D., Videla R., Kania S.A.: Evaluation of cefoxitin disk diffusion breakpoint for detection of methicillin resistance in Staphylococcus pseudintermedius isolates from dogs. J. Vet. Diagn. Invest. 24, 964–967 (2012)

9. Bond R., Loeffler A.: What’s happened to Staphylococcus intermedius? Taxonomic revision and emergence of multi-drug resistance. J. Small Anim. Pract. 53, 147–54 (2012)

10. Clinical Laboratory Standards Institute (CLSI): Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 3rd ed. Wayne, PA: CLSI Supplement; VET01S (2015).

11. Coates R., Moran J., Horsburgh M.J.: Staphylococci: colonizers and pathogens of human skin. Future Microbiol. 9, 75–91 (2014)

12. Cornaglia G., Courcol R., Herrmann J.-L., Kahlmeter G., Peigue-Lafeuille H., Vila J.: European Manual of Clinical Microbiology. European Society of Clinical Microbiology and Societe Francaise de Microbiologie, 2012

13. Couto N., Monchique C., Belas A., Marques C., Gama L.T., Pomba C:. Trends and molecular mechanisms of antimicrobial resistance in clinical staphylococci isolated from companion animals over a 16 year period. J. Antimicrob. Chemother. 71, 1479–1487 (2016)

14. Damborg P., Moodley A., Aalbæk B., Ventrella G., Dos Santos T.P., Guardabassi L.: High genotypic diversity among methicillin-resistant Staphylococcus pseudintermedius isolated from canine infections in Denmark. BMC Vet. Res. 12: 131. DOI: 10.1186/s12917-016-0756-y (2016)

15. Dargatz D.A., Erdman M.M., Harris B.: A survey of methods used for antimicrobial susceptibility testing in veterinary diagnostic laboratories in the United States. J. Vet. Diagn. Invest. 29, 669–675 (2017)

16. Elbehiry A., Al-Dubaib M., Marzouk E., Osman S., Edrees H.: Performance of MALDI biotyper compared with Vitek™ 2 compact system for fast identification and discrimination of Staphylococcus species isolated from bovine mastitis. Microbiologyopen, 5, 1061–1070 (2016)

17. El-Bouri K., Johnston S., Rees E., Thomas I., Bome-Mannathoko N., Jones C., Reid M., Ben-Ismaeil B., Davies A.R.,
Harris L.G., Mack D.: Comparison of bacterial identification by MALDI-TOF mass spectrometry and conventional diagnostic microbiology methods: agreement, speed and cost implications. Br. J. Biomed. Sci. 69, 47–55 (2012)

18. Ellington M.J., Woodford N. i wsp.: The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin. Microbiol. Infect. 23, 2–22 (2017)

19. Europejski Komitet ds. Oznaczania Lekowrażliwości, European Committee for Antimicrobial Susceptibility Testing, EUCAST, (14.02.2018)

20. Feng Y., Tian W., Lin D., Luo Q., Zhou Y., Yang T., Deng Y., Liu Y.H., Liu J.H.: Prevalence and characterization of methicillin-resistant Staphylococcus pseudintermedius in pets from South China. Vet. Microbiol. 160, 517–524 (2012)

21. Frank L.A., Loeffler A.: Meticillin-resistant Staphylococcus pseudintermedius: clinical challenge and treatment options. Vet.
Dermatol. 23, 283–291 (2012)

22. Gordon N.C., Golubchik T. i wsp.: Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J. Clin. Microbiol. 52, 1182–1191 (2014)

23. Guardabassi L., Damborg P., Stamm I., Kopp P.A., Broens E.M., Toutain P.L.: ESCMID Study Group for Veterinary Microbiology. Diagnostic microbiology in veterinary dermatology: present and future. Vet. Dermatol. 28, 146–e30 (2017)

24. Guardabassi L., Prescott J.F.: Antimicrobial stewardship in small animal veterinary practice: from theory to practice. Vet. Clin. North. Am. Small. Anim. Pract. 45, 361–376 (2015).

25. Hauschild T., Stepanović S., Zakrzewska-Czerwińska J.: Staphylococcus stepanovicii sp. nov., a novel novobiocin-resistant oxidase-positive staphylococcal species isolated from wild small mammals. Syst. Appl. Microbiol. 33, 183–187 (2010)

26. Hryniewicz W., Ozorowski T.: Szpitalna Polityka Antybiotykowa Propozycje dla polskich do szpitali. Narodowy Program Ochrony Antybiotyków, Warszawa 2011, (14.02.2018)

27. Huse H.K., Miller S.A., Chandrasekaran S., Hindler J.A., Lawhon S.D., Bemis D.A., Westblade L.F., Humphries R.M.: Evaluation of Oxacillin and Cefoxitin Disk Diffusion and MIC Breakpoints Established by the Clinical and Laboratory Standards Institute for Detection of mecA-Mediated Oxacillin Resistance in Staphylococcus schleiferi. J. Clin. Microbiol. 56, e01653–17 (2018)

28. Jorgensen J.H., Pfaller M.A., Carroll K.C., Funke G., Marie Louise Landry M.L., Richter S.S., Warnock D.W.: Manual of Clinical Microbiology. 11th edition. American Society for Microbiology, 2015

29. Kadlec K., Schwarz S.: Antimicrobial resistance of Staphylococcus pseudintermedius. Vet. Dermatol. 23, 276–282 (2012)

30. Kizerwetter-Świda M., Chrobak-Chmiel D., Rzewuska M., Antosiewicz A., Dolka B., Ledwoń A., Czujkowska A., Binek M.: Genetic characterization of coagulase-positive staphylococci isolated from healthy pigeons. Pol. J. Vet. Sci. 18, 627–634 (2015)

31. Kizerwetter-Świda M., Chrobak-Chmiel D., Rzewuska M., Binek M.: Resistance of canine methicillin-resistant Staphylococcus pseudintermedius strains to pradofloxacin. J. Vet. Diagn. Invest. 28, 514–518 (2016)

32. Kizerwetter-Świda M., Chrobak-Chmiel D., Rzewuska M., Binek M:. Staphylococcus pseudintermedius – trudno rozpoznawalny patogen. Post. Mikrobiol. 54, 103–114 (2015)

33. Kmieciak W., Szewczyk E.M.: Gatunki koagulazododatnie rodzaju Staphylococcus – taksonomia, chorobotwórczość Post. Mikrobiol. 52, 233–244 (2017)

34. Lazaris A., Coleman D.C., Kearns A.M., Pichon B., Kinnevey P.M., Earls M.R., Boyle B., O’Connell B., Brennan G.I., Shore A.C.: Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE. J. Antimicrob. Chemother. 72, 3252–3257 (2017)

35. Matuschek E., Brown D. F., Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. 20, O255–O256 (2014)

36. Morris D.O., Rook K.A., Shofer F.S., Rankin S.C.: Screening of Staphylococcus aureus, Staphylococcus intermedius, and Staphylococcus schleiferi isolates obtained from small companion animals for antimicrobial resistance: a retrospective review of 749 isolates (2003–2004). Vet. Dermatol. 17, 332–227 (2006)

37. Nováková D., Pantůcek R., Hubálek Z., Falsen E., Busse H.J., Schumann P., Sedlácek I.: Staphylococcus microti sp. nov., isolated from the common vole (Microtus arvalis). Int. J. Syst. Evol. Microbiol. 60, 566–573 (2010)

38. Park J.Y., Fox L.K., Seo K.S., McGuire M.A., Park Y.H., Rurangirwa F.R., Sischo W.M., Bohach G.A.: Comparison of phenotypic and genotypic methods for the species identification of coagulase-negative staphylococcal isolates from bovine intramammary infections. Vet. Microbiol. 147, 142–148 (2011)

39. Poulsen L.L., Thøfner I., Bisgaard M., Olsen R.H., Christensen J.P., Christensen H.: Staphylococcus agnetis, a potential pathogen in broiler breeders. Vet. Microbiol. 212, 1–6 (2017)

40. Pulido M.R., García-Quintanilla M., Martín-Peña R., Cisneros J.M., McConnell M.J.: Progress on the development of rapid methods for antimicrobial susceptibility testing. J. Antimicrob. Chemother. 68, 2710–2717 (2013)

41. Rhoads D.D., Wang H., Karichu J., Richter S.S.: The presence of a single MALDI-TOF mass spectral peak predicts methicillin resistance in staphylococci. Diagn. Microbiol. Infect. Dis. 86, 257–261 (2016)

42. Riesen A., Perreten V.: Staphylococcus rostri sp. nov., a haemolytic bacterium isolated from the noses of healthy pigs. Int. J. Syst. Evol. Microbiol. 60, 2042–2047 (2010)

43. Rozporządzenie Parlamentu Europejskiego i Rady (WE) 1831/2003 z dnia 22 września 2003 r. w sprawie dodatków stosowanych w żywieniu zwierząt.

44. Sader H.S., Jones R.N.: Evaluation of vancomycin and daptomycin potency trends (MIC creep) against methicillin-resistant Staphylococcus aureus isolates collected in nine U.S. medical centers from 2002 to 2006. Antimicrob. Agents Chemother. 53, 4127–4132 (2009)

45. Sasaki T., Tsubakishita S., Tanaka Y., Sakusabe A., Ohtsuka M., Hirotaki S., Kawakami T., Fukata T., Hiramatsu K.: Multiplex-PCR method for species identification of coagulase-positive staphylococci. J. Clin. Microbiol. 48, 765–769 (2010)

46. Savini V., Di Giuseppe N., Fazii P., D’Amario C., D’Antonio D., Carretto E.: Staphylococcus pseudintermedius heterogeneously expresses the mecA gene. Vet. Microbiol. 165, 489–490 (2013)

47. Savini V., Passeri C., Mancini G., Iuliani O., Marrollo R., Argentieri A.V., Fazii P., D’Antonio D., Carretto E.: Coagulase-positive staphylococci: my pet’s two faces. Res Microbiol. 164, 371–374 (2013)

48. Silva M.B., Ferreira F.A., Garcia L.N., Silva-Carvalho M.C., Botelho L.A., Figueiredo A.M., Vieira-da-Motta O.: An evaluation of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of Staphylococcus pseudintermedius isolates from canine infections. J. Vet. Diagn. Invest. 27, 231–235 (2015)

49. Supré K., De Vliegher S., Cleenwerck I., Engelbeen K., Van Trappen S., Piepers S., Sampimon O.C., Zadoks R.N., De Vos P., Haesebrouck F.: Staphylococcus devriesei sp. nov., isolated from teat apices and milk of dairy cows. Int. J. Syst. Evol. Microbiol. 60, 2739–2744 (2010)

50. Swedish strategy to combat antibiotic resistance. (27.03.2018)

51. Szczuka E., Makowska N., Kaznowski A.: Molekularne metody identyfikacji bakterii z rodzaju Staphylococcus. Post. Mikrobiol. 52, 211–218 (2013)

52. Tagini F., Greub G.: Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review. Eur. J. Clin. Microbiol. Infect. Dis. DOI: 10.1007/s10096-017-3024-6 (2017)

53. Taponen S., Nykäsenoja S., Pohjanvirta T., Pitkälä A., Pyörälä S.: Species distribution and in vitro antimicrobial susceptibility
of coagulase-negative staphylococci isolated from bovine mastitic milk. Acta Vet Scand. DOI: 10.1186/s13028-016-0193-8 (2016)

54. Taponen S., Supré K., Piessens V., Van Coillie E., De Vliegher S., Koort J.M.: Staphylococcus agnetis sp. nov., a coagulase-variable species from bovine subclinical and mild clinical mastitis. Int. J. Syst. Evol. Microbiol. 62, 61–65 (2012)

55. Tong S.Y, Giffard P.M. i wsp.: Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int. J. Syst. Evol. Microbiol. 65, 15–22 (2015)

56. van Duijkeren E., Törneke K. i wsp.: Scientific Advisory Group on Antimicrobials (SAGAM). Review on methicillin-resistant Staphylococcus pseudintermedius. J. Antimicrob. Chemother. 66, 2705–2714 (2011)

57. Vanderhaeghen W., Piepers S., Leroy F., Van Coillie E., Haesebrouck F., De Vliegher S.: Identification, typing, ecology and epidemiology of coagulase negative staphylococci associated with ruminants. Vet . J. 203, 44–51 (2015)

58. Weese J.S., Sykes J.E. i wsp.: Antimicrobial use guidelines for treatment of urinary tract disease in dogs and cats: antimicrobial guidelines working group of the international society for companion animal infectious diseases. Vet. Med. Int. DOI: 10.4061/2011/263768 (2011)

59. World Organization of Animal Health (OIE). Laboratory methodologies for bacterial antimicrobial susceptibility testing. In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. (14.02.2018)

60. Wu M.T., Burnham C.A., Westblade L.F., Dien Bard J., Lawhon S.D., Wallace M.A., Stanley T., Burd E., Hindler J., Humphries R.M.: Evaluation of Oxacillin and Cefoxitin Disk and MIC Breakpoints for Prediction of Methicillin Resistance in Human and Veterinary Isolates of Staphylococcus intermedius Group. J. Clin. Microbiol. 54, 535–542 (2016)

61. Yossepowitch O., Dan M., Kutchinsky A., Gottesman T., Schwartz-Harari O.: A cost-saving algorithm for rapid diagnosis of Staphylococcus aureus and susceptibility to oxacillin directly from positive blood culture bottles by combined testing with BinaxNOW® S. aureus and Xpert MRSA/SA Assay. Diagn. Microbiol. Infect Dis. 78, 352–355 (2014)