FROM A COMMENSAL TO A PATHOGEN – TWO FACES OFSTAPHYLOCOCCUS EPIDERMIDIS

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

36
Reader(s)
95
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 57 , ISSUE 4 (April 2018) > List of articles

FROM A COMMENSAL TO A PATHOGEN – TWO FACES OFSTAPHYLOCOCCUS EPIDERMIDIS

Beata Podgórska * / Danuta Kędzia

Keywords : commensal bacteria, biofilm, Staphylococcus epidermidis

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 57, Issue 4, Pages 338-348, DOI: https://doi.org/10.21307/PM-2018.57.4.338

License : (CC BY-NC-ND 4.0)

Published Online: 24-May-2019

ARTICLE

ABSTRACT

Staphylococcus epidermidis is a commensal organism and the most abundant constituent of the healthy human skin and mucous membrane microbiota. It is well adapted to colonize and evade human antimicrobial barriers. Staphylococcus epidermidis not only competes with potentially harmful pathogens, but also produces a plethora of proteins supporting host natural defenses. At the same time, Staphylococcus epidermidis is an opportunistic pathogen recognized as one of the leading causes of healthcare-associated infections. Staphylococcus epidermidis is mainly responsible for bloodstream infections and other biomedical device-related infections. Hospital strains of Staphylococcus epidermidis form protective biofilm and are characterized by their resistance to various antibiotics.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Agarwal S., Sharma G., Dang S., Gupta S., Gabrani R.: Antimicrobial peptides as anti-infectives against Staphylococcus epidermidis. Med. Princ. Pract. 25, 301–308 (2016)

2. Asaad A.M., Qureshib M.A., Hasanc S.M.: Clinical significance of coagulase-negative staphylococci isolates from nosocomial bloodstream infections. Infect. Dis. 48, 356–360 (2016)

3. Barbier F., Ruimy R. i wsp.: Methicillin-resistant coagulase-negative staphylococci in the community: high homology of SCCmec IV between Staphylococcus epidermidis and major clones of methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 15, 270–281 (2010)

4. Bastos M.C., Ceotto H., Coelho M.L., Nascimento J.S.: Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications. Curr. Pharm. Biotechnol. 10, 38–61 (2009)

5. Becker K., Heilmann C., Peters G.: Coagulase-negative staphylococci. Clin. Microbiol. Rev. 27, 870–926 (2014)

6. Biasucci G., Benenati B., Morelli L., Bessi E., Boehm G.: Cesarean delivery may affect the early biodiversity of intestinal bacteria. J. Nutr. 138, 1796–1800 (2008)

7. Bierbaum G., Gotz F., Peschel A., Kupke T., van de Kamp M., Sahl H.G.: The biosynthesis of the lantibiotics epidermin, gallidermin, Pep5 and epilancin K7. Antonie van Leeuwenhoek, 69, 119–127 (1996)

8. Bojar R.A., Holland K.T.: Review: the human cutaneous microflora and factors controlling colonisation. World J. Microb. Biot. 18, 889–903 (2002)

9. Borre Y.E., Moloney R.D., Clarke G., Dinan T.G., Cryan J.F.: The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv. Exp. Med. Biol. 817, 373–403 (2014)

10. Cayley S., Lewis B.A., Record M.T.: Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J. Bacteriol. 174, 1586–1595 (1992)

11. Cerca N., Jefferson K.K., Oliveira R., Pier G.B., Azeredo J.: Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm orinthe planktonic state. Infect. Immun. 74, 4849–4855 (2006)

12. Chamberlain N.R., Brueggemann S.A.: Characterisation and expression of fatty acid modifying enzyme produced by Staphylococcus epidermidis. J. Med. Microbiol. 46, 693–697 (1997)

13. Chen H.W., Liu P.F., Liu Y.T., Kuo S., Zhang X.Q., Schooley R.T., Rohde H., Gallo R.L., Huang C.M.: Nasal commensal Staphylococcus epidermidis counteracts influenza virus. Sci. Rep. 6, 278–279 (2016)

14. Cheung G.Y.C., Joo H.-S., Chatterjee S.S., Otto M.: Phenol-soluble modulins – critical determinants of staphylococcal virulence. FEMS Microbiol. Rev. 38, 698–719 (2014)

15. Cheung G.Y., Rigby K., Wang R., Queck S.Y., Braughton K.R., Whitney A.R., Teintze M., DeLeo F.R., Otto M.: Staphylococcus epidermidis strategies to avoid killing by human neutrophils. Plos Pathog. 6, e1001133 (2010)

16. Christner, M., Rohde i wsp.: The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol. Microbiol. 75, 187–207 (2010)

17. Chu V.H., Fowler V.G.J. i wsp.: Emergence of coagulase-negative staphylococci as a cause of native valve endocarditis. Clin. Infect. Dis. 46, 232–242 (2008)

18. Cogen A.L., Gallo R.L. i wsp.: Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J. Invest. Dermatol. 130, 192–200 (2010)

19. Collado M.C., Rautava S., Aakko J., Isolauri E., Salminen S.: Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Scientific Reports, 6, DOI: 10.1038/srep23129 (2016)

20. Costello E.K., Lauber C.L., Hamady M., Fierer N., Gordon J.I., Knight R.: Bacterial community variation in human body habitats across space and time. Science, 326, 1694–1697 (2009)

21. Crass B.A., Bergdoll M.S.: Involvement of coagulase-negative staphylococci in toxic shock syndrome. J. Clin. Microbiol. 23, 43–45 (1986)

22. Cretenet M., Even S., Le Loir Y.: Unveiling Staphylococcus aureus enterotoxin production in dairy products: a review of recent advances to face new challenges. Dairy Sci. Technol. 91, 127–150 (2011)

23. Cunha M.L., Calsolari R.A.O.: Toxigenicity in Staphylococcus aureus and coagulase-negative staphylococci: epidemiological and molecular aspects. Microbiol. Insights, 1, 13–24 (2008)

24. Cunha M.L., Calsolari R.A.O., Araújo Jr.J.P.: Detection of enterotoxin and toxic shock syndrome toxin 1 genes in Staphylococcus, with emphasis on coagulase-negative staphylococci. Microb. Immun. 51, 381–390 (2007)

25. Dasanayake A.P., Li Y., Wiener H., Ruby J.D., Lee M.J.: Salivary Actinomyces naeslundii genospecies 2 and Lactobacillus casei levels predict pregnancy outcomes. J. Periodontol. 76, 171–177 (2005)

26. De N., Godlove M.: Prevalence of S. aureus and S. epidermidis among patients with indwelling catheters and their antibiogram using some commonly used antibiotics. J. Am. Sci. 6, 515–520 (2010)

27. Diep B.A., Perdreau-Remington F. i wsp.: Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet, 367, 731–739 (2006)

28. Domingo P., Fontanet A.: Management of complications associated with totally implantable ports in patients with AIDS. AIDS Patient Care STDS, 15: 7–13 (2001)

29. Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R.: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. 107, 11971–11975 (2010)

30. Drake D.R., Brogden K.A., Dawson D.V., Wertz P.W.: Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J. Lipid Res. 49, DOI: 10.1194/jlr.R700016-JLR200 (2008)

31. Eggesbø M., Moen B., Peddada S., Baird D., Rugtveit J., Midtvedt T., Bushel P.R., Sekelja M., Rudi K.: Development of gut microbiota in infants not exposed to medical interventions. APMIS, 119, DOI: 10.1111/j.1600-0463.2010.02688.x (2011)

32. Ekkelenkamp M.B., Hanssen M., Danny Hsu S.T., de Jong A., Milatovic D., Verhoef, J., van Nuland N.A.: Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of Staphylococcus epidermidis. FEBS Lett. 579, 1917–1922 (2005)

33. Franca A., Carvalhais V., Vilanova M., Pier G.B., Cerca N.: Characterization of an in vitro fed-batch model to obtain cells released from S. epidermidis biofilms. AMB Express, 6, DOI: 10.1186/s13568-016-0197-9 (2016)

34. Gallo R.L., Hooper L.V.: Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12, 503–516 (2013)

35. Gallo R.L., Nakatsuji T.: Microbial symbiosis with the innate immune defense system of the skin. J. Invest. Dermatol. 131, 1974–1980 (2011)

36. Ghassemi A., Farhangi H., Badiee Z., Banihashem A., Mosaddegh M.R.: Evaluation of nosocomial infection in patients at hematology-oncology ward of Dr. Sheikh children’s hospital. Iran. J. Ped. Hematol. Oncol. 5, 179–185 (2015)

37. Grice E.A., Segre J.A.: The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011)

38. Grice E.A., Segre J.A. i wsp.: Topographical and temporal diversity of the human skin microbiome. Science, 29, 1190–1192 (2009)

39. Gristina A.: Biomaterial-centered infection: microbial adhesion versus tissue integration. Science, 237, 1588–1595 (1987)

40. Hidron A.I., Edwards J.R., Patel J., Horan T.C., Sievert D.M., Pollock D.A., Fridkin S.K.: Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol. 29, 996–1011 (2008)

41. Hirai Y.: Survival of bacteria under dry conditions; from a viewpoint of nosocomial infection. J. Hosp. Infect. 19, 191–200 (1991)

42. Holland D.B., Bojar R.A., Farrar M.D., Holland K.T.: Differential innate immune responses of a living skin equivalent model colonized by Staphylococcus epidermidis or Staphylococcus aureus. FEMS Microbiol. Lett. 290, 149–155 (2009)

43. Iwase T., Uehara Y., Shinji H., Tajima A., Seo H., Takada K., Agata T., Mizunoe Y.: Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature, 465, 346–349 (2010)

44. Janek D., Zipperer A., Kulik A., Krismer B., Peschel A.: High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors. Plos Pathog. 12, e1005812 (2016)

45. Jiménez E., Marin M.L., Martin R., Odriozola J.M., Olivares M., Xaus J., Fernández L., Rodríguez J.M.: Is meconium from healthy newborns actually sterile? Res. Microbiol. 159, 187–193 (2008a)

46. Jimenez E., Delgado S., Maldonado A., Arroyo R., Albujar M., Garcia N., Jariod M., Fernandez L., Gomez A., Rodriguez J.M.:
Staphylococcus epidermidis: a differential trait of the fecal microbiota of breast-fed infants. BMC Microbiol. 8, DOI: 10.1186/ 1471-2180-8-143 (2008b)

47. Kalliomäki M., Collado M.C., Salminen S., Isolauri E.: Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 87, 534–538 (2008)

48. Keyworth, N., Millar, M.R, Holland, K.T.: Development of cutaneous microflora in premature neonates. Arch. Dis. Child. 67, 797–801 (1992)

49. Kocianova S., Vuong C., Yao Y., Voyich J.M., Fischer E.R., DeLeo F.R., Otto M.: Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J. Clin. Invest. 115, 688–694 (2005)

50. Kristian S., Birkenstock T., Sauder U., Mack D., Gotz F., Landmann R.: Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J. Infect. Dis. 197, 1028–1035 (2008)

51. Kunin C.M., Rudy J.: Effect of NaCl-induced osmotic stress on intracellular concentrations of glycine betaine and potassium in Escherichia coli, Enterococcus faecalis, and staphylococci. J. Lab. Clin. Med. 118, 217–224 (1991)

52. Lai Y., Cogen A.L., Radek K.A., Park H.J., Macleod D.T., Leichtle A., Ryan A.F., Di Nardo A., Gallo R.L.: Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J. Invest. Dermatol. 130, 2211–2221 (2010)

53. Lai Y., Gallo R.L. i wsp.: Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 15, 1377–1382 (2009)

54. Lai Y., Villaruz A.E., Li M., Cha D.J., Sturdevant D.E., Otto M.: The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Mol. Microbiol. 63, 497–506 (2007)

55. Le K.Y., Otto M.: Quorum-sensing regulation in staphylococci – an overview. Front. Microbiol. 6, DOI: 10.3389/fmicb.2015.01174 (2015)

56. Li M., Lai Y., Villaruz A.E., Cha D.J., Sturdevant D.E., Otto M.: Gram-positive three-component antimicrobial peptide-sensing system. Proc. Natl. Acad. Sci. USA, 104, 9469–9474 (2007)

57. Lina G., Fleer A., Etienne J., Greenland T.B., Vandenesch F.: Coagulase-negative staphylococci isolated from two cases of toxic
shock syndrome lack superantigenic activity, but induce cytokine production. FEMS Immunol. Med. Microbiol. 13, 81–86 (1996)

58. Lindgren J.K., Fey P.D. i wsp.: Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J. Bacteriol. 196, 2277–2289 (2014)

59. Madhusoodanan J., Gill, S.R. i wsp.: An enterotoxin-bearing pathogenicity island in Staphylococcus epidermidis. J. Bacteriol. 193, 1854–1862 (2011)

60. Majchrzak K., Mierzwińska-Nastalska E., Chmura A., Kwiatkowski A., Paczek L., Młynarczyk G., Szymanek-Majchrzak K.: Comparison of staphylococcal flora in denture plaque and the surface of the pharyngeal mucous membrane in kidney transplant recipients. Transplant. Proc. 48, 1590–1597 (2016)

61. Martin R., Knol J.: Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. Plos One, 11, e0158498 (2016)

62. McCann M.T., Gilmore B.F., Gorman S.P.: Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. J Pharm. Pharmacol. 60, 1551–1571 (2008)

63. Miragaia M., Diep B.A. i wsp.: Genetic diversity of arginine catabolic mobile element in Staphylococcus epidermidis. Plos One, 6, e7722 (2009)

64. Miragaia M., Thomas J.C., Couto I., Enright M.C., de Lencastre H.: Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J. Bacteriol. 189, 2540 –2552 (2007)

65. Montanaro L., Speziale P., Campoccia D., Ravaioli S., Cangini I., Pietrocola G., Giannini S., Arciola C.: Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol. 6, 1329–1349 (2011)

66. Nakatsuji T., Gallo R.L. i wsp.: A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci. Adv. 4, DOI: 10.1126/sciadv.aao4502 (2018)

67. Oh J., Byrd A.L., Deming C., Conlan S., NISC Comparative Sequencing Program, Kong H.H., Segre J.A.: Biogeography and individuality shape function in the human skin metagenome. Nature, 514, 59–64 (2014)

68. Otto M.: Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu. Rev. Med. 64, 175–188 (2013)

69. Otto M.: Staphylococcus epidermidis – the ‘accidental’ pathogen. Nat. Rev. Microbiol. 7, 555–567 (2009a)

70. Otto M.: Bacterial sensing of antimicrobial peptides. Contrib. Microbiol. 16, 136–149 (2009b)

71. Overturf G.D., Sherman M.P., Scheifele D.W., Wong L.C.: Neonatal necrotizing enterocolitis associated with delta toxin-producing methicillin-resistant Staphylococcus aureus. Pediatr. Infect. Dis. J. 9, 88–91 (1990)

72. Park Y.J., Lee H.K.: The role of skin and orogenital microbiota in protective immunity and chronic immune-mediated inflammatory disease. Front. Immunol. 10, DOI: 10.3389/fimmu.2017 (2018)

73. Park B., Iwase T., Liu G.Y.: Intranasal application of S. epidermidis prevents colonization by methicillin-resistant Staphylococcus aureus in mice. Plos One, 6, e25880 (2011)

74. Peschel A., Otto M.: Phenol-soluble modulins and staphylococcal infection. Nat. Rev. Microbiol. 11, 667–673 (2013)

75. Peterson, J., S., Guyer M. i wsp.: The NIH Human Microbiome Project. Genome Res. 19, 2317–2323 (2009)

76. Pinheiro L., Brito C.I., de Oliveira A., Martins P.Y., Pereira V.C., da Cunha M.L.: Staphylococcus epidermidis and Staphylococcus haemolyticus: molecular detection of cytotoxin and enterotoxin genes. Toxins, 7, 3688–3699 (2015)

77. Rodríguez J.M., Collado M.C. i wsp.: The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 2, DOI: 10.3402/mehd.v26.26050 (2015)

78. Rohde H., Burdelski C., Bartscht K., Hussain M., Buck F., Horstkotte M.A., Knobloch J.K., Heilmann C., Herrmann M., Mack D.: Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol. Microbiol. 55, 1883–1895 (2005)

79. Rupp M.E., Archer G.L.: Coagulase-negative staphylococci: pathogens associated with medical progress. Clin. Infect. Dis. 19, 231–245 (1994)

80. Sandiford S., Upton M.: Identification, characterization, and recombinant expression of epidermicin N101, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against staphylococci. Antimicrol. Agents Chemother. 56, 1539–1547 (2012)

81. Scharschmidt T.C.: Establishing tolerance to commensal skin bacteria: timing is everything. Dermatol. Clin. 35, DOI: 10.1016/j.det.2016.07.007 (2017)

82. Scharschmidt T.C., Fischbach M.A.: What lives on our skin: ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov. Today Dis. Mech. 1, 83–89 (2013)

83. Scheifele D.W., Bjornson G.L., Dyer R.A., Dimmick J.E.: Delta-like toxin produced by coagulase-negative staphylococci is associated with neonatal necrotizing enterocolitis. Infect. Immun. 55, 2268–2273 (1987)

84. Sharon I., Morowitz M.J., Thomas B.C., Costello E.K., Relman D.A., Banfield J.F.: Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res. 23, 111–120 (2013)

85. Sugimoto S., Iwamoto T., Takada K., Okuda K., Tajima A., Iwase T., Mizunoe Y.: Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J. Bacteriol. 195, 1645–1655 (2013)

86. Thomas S., Prendergast G.C. i wsp.: The host microbiome regulates and maintains human health: a primer and perspective for non microbiologists. Cancer Res. 15, 1783–1812 (2017)

87. Tormo M.A., Knecht E., Gotz F., Lasa I., Penades J.R.: Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology, 151, 2465–2475 (2005)

88. Vandecandelaere I., Van Nieuwerburgh F., Deforce D., Coenye T.: Metabolic activity, urease production, antibiotic resistance and virulence in dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus. Plos One, 12, e0172700 (2017)

89. Vasconcelos N.G., Cunha M.L.R.: Staphylococcal enterotoxins: molecular aspects and detection methods. J. Public Health Epidemiol. 2, 29–42 (2010)

90. Vuong C., Voyich J.M., Fischer E.R., Braughton K.R., Whitney A.R., DeLeo F.R., Otto M.: Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol. 6, 269–275 (2004)

91. Vuong C., Otto M.: Staphylococcus epidermidis infections. Microbes Infect. 4, 481–489 (2002)

92. Wang R., Khan B.A., Cheung G.Y, Bach T.H., Jameson-Lee M., Kong K.F., Queck S.Y., Otto M.: Staphylococcus epidermidis
surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J. Clin. Invest. 121, 238–248 (2011)

93. Wang R, Otto M. i wsp.:. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13, 1510–1514 (2007)

94. Whitchurch C.B., Tolker-Nielsen T., Ragas P.C., Mattick J.S.: Extracellular DNA required for bacterial biofilm formation. Science, 295, 1487 (2002)

95. Widerström M., Wiström J., Edebro H., Marklund E., Backman M., Lindqvist P., Monsen T.: Colonization of patients, healthcare workers, and the environment with healthcare-associated Staphylococcus epidermidis genotypes in an intensive care unit: a prospective observational cohort study. BMC Infect. Dis. DOI: 10.1186/s12879-016-2094-x (2016)

96. Widerström M., McCullough C.A., Coombs G.W., Monsen T., Christiansen K.J.: A multidrug-resistant Staphylococcus epidermidis clone (ST2) is an ongoing cause of hospital-acquired infection in a Western Australian Hospital. J. Clin. Microbiol. 50, 2147–2151 (2012)

97. Widerstrom M., Monsen T., Karlsson C., Wistrom J.: Molecular epidemiology of meticillin-resistant coagulase-negative staphylococci in a Swedish county hospital: evidence of intra- and interhospital clonal spread. J. Hosp. Infect. 64, 177–183 (2006)

98. Wu H., Moser C., Wang H.Z., Høiby N., Song Z.J.: Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 7, DOI: 10.1038/ijos.2014.65 (2014)

99. Ziebuhr W., Hennig S., Eckart M., Kranzler H., Batzilla C., Kozitskaya S.: Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int. J. Antimicrob. Ag. 28, 14–20 (2006)

100. Ziebuhr W., Heilmann C., Götz F., Meyer P., Wilms K., Straube E., Hacker J.: Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65, 890–896 (1997)

EXTRA FILES

COMMENTS