Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 0079-4252
eISSN: 2545-3149





Volume / Issue / page

Related articles

VOLUME 57 , ISSUE 4 (April 2018) > List of articles


Łukasz P. Tymiński / Zuzanna Znajewska / Grażyna B. Dąbrowska *

Keywords : fungi, hydrophobins, stress, hydrophobin film

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 57, Issue 4, Pages 374-384, DOI:

License : (CC BY-NC-ND 4.0)

Published Online: 24-May-2019



Hydrophobins are surface active proteins produced by filamentous fungi. They play a role in fungal growth and their life cycle. Proteins with similar properties have been also found in prokaryotic organisms. Hydrophobins are characterized by a specific arrangement of cysteine residues, which form four disulfide bridges in the amino acid sequence. This construction gives hydrophobins their hydrophobic properties, allowing for their spontaneous assembly into amphipathic monolayers at hydrophobic-hydrophilic interfaces. These unique properties of hydrophobins make them more and more popular with regard to their potential application in industry. New ways of using hydrofobins in various branches of the business sector are being developed. Hydrofobins are already widely used in the food industry, pharmaceutical industry, as well as molecular biology.

Content not available PDF Share



1. Arnaouteli S., MacPhee C.E., Stanley-Wall N.R.: Just in case it rains: building a hydrophobic biofilm the Bacillus subtilis way. Curr. Opin. Microbiol. 34, 7–12 (2016)

2. Asghari A.K., Norton I., Mills T., Sadd P., Spyropoulos F.: Interfacial and foaming characterisation of mixed protein-starch particle systems for food-foam applications. Food Hydrocoll. 53, 311–319 (2016)

3. Askolin S., Linder M., Scholtmeijer K., Tenkanen M., Penttilä M., de Vocht M.L., Wösten H.A.B.: Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei. Biomacromolecules, 7, 1295–1301 (2006)

4. Bilewicz R., Witomski J., Van der Heyden A., Tagu D., Palin B., Rogalska E.: Modification of electrodes with self-assembled hydrophobin layers. J. Phys. Chem. B. 105, 9772–9777 (2001)

5. Brandani G.B., Schor M., Morris R., Stanley-Wall N., MacPhee C.E., Marenduzzo D., Zachariae U.: The bacterial hydrophobin BslA is a switchable ellipsoidal janus nanocolloid. Langmuir ACS J. Surf. Colloids, 31, 11558–11563 (2015)

6. Bromley K.M., Morris R.J., Hobley L., Brandani G., Gillespie R.M.C., McCluskey M., Zachariae U., Marenduzzo D., Stanley-Wall N.R., MacPhee C.E.: Interfacial self-assembly of a bacterial hydrophobin. Proc. Natl. Acad. Sci. USA, 112, 5419–5424 (2015)

7. Bruns S., Kniemeyer O., Hasenberg M., Aimanianda V., Nietzsche S., Thywissen A., Jeron A., Latgé J.-P., Brakhage A.A., Gunzer M.: Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog. 6, e1000873 (2010)

8. Camattari A., Goh A., Yip L.Y., Tan A.H.M., Ng S.W., Tran A., Liu G., Liachko I., Dunham M.J., Rancati G.: Characterization of a panARS-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications. Microb. Cell Fact. 15, 139 (2016)

9. Chaplin M.F., Kennedy J.F. (w) Carbohydrate Analysis: A Practical Approach. Red.: M.F. Chaplin, J.F. Kennedy, IRL Press, Oxford (1994), s. 1–324.

10. Cicatiello P., Dardano P., Pirozzi M., Gravagnuolo A.M., De Stefano L., Giardina P.: Self-assembly of two hydrophobins from marine fungi affected by interaction with surfaces. Biotechnol. Bioeng. 114, 2173–2186 (2017)

11. Collén A., Persson J., Linder M., Nakari-Setälä T., Penttilä M., Tjerneld F., Sivars U.: A novel two-step extraction method with detergent/polymer systems for primary recovery of the fusion protein endoglucanase I-hydrophobin I. Acta Biochim. Biophys. – Gen. Subj. 1569, 139–150 (2002)

12. Cooper A., Kennedy M.W.: Biofoams and natural protein surfactants. Biophys. Chem. 151, 96–104 (2010)

13. Cox A., Aldred D.L., Russell A.B.: Exceptional stability of food foams using class II hydrophobin HFBII. Food Hydrocoll. 23, 366–376 (2009)

14. Cox P. W., P. Hooley.: Hydrophobins: New prospects for biotechnology. Fungal Biol. Rev. 23, 40–47 (2009)

15. Dagenais T.R.T., Giles S.S., Aimanianda V., Latgé J.-P., Hull C.M., Keller N.P.: Aspergillus fumigatus LaeA-mediated phagocytosis is associated with a decreased hydrophobin layer. Infect. Immun. 78, 823–829 (2010)

16. Daly R., Hearn M.T.: Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J. Mol. Recognit. 18, 119–138 (2005)

17. Danov K.D., Kralchevsky P.A., Radulova G.M., Basheva E.S., Stoyanov S.D., Pelan E.G.: Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements. Adv. Colloid Interface Sci. 222, 148–161 (2015)

18. de Vocht M.L. de Reviakine I., Wösten H.A.B., Brisson A., Wessels J.G.H., Robillard G.T.: Structural and functional role of the disulfide bridges in the hydrophobin SC3. J. Biol. Chem. 275, 28428–28432 (2000)

19. de Vocht M.L., Reviakine I., Ulrich W.-P., Bergsma-Schutter W., Wösten H.A.B., Vogel H., Brisson A., Wessels J.G.H., Robillard G.T.: Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates. Protein Sci. Publ. Protein Soc. 11, 1199–1205 (2002)

20. de Vries O.M.H., Fekkes M.P., Wösten H.A.B., Wessels J.G.H.: Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungi. Arch. Microbiol. 159, 330–335 (1993)

21. Dimitrova L.M., Boneva M.P., Danov K.D., Kralchevsky P.A., Basheva E.S., Marinova K.G., Petkov J.T., Stoyanov S.D.: Limited coalescence and Ostwald ripening in emulsions stabilized by hydrophobin HFBII and milk proteins. Colloids Surf. Physicochem. Eng. Asp. 509, 521–538 (2016)

22. Ebbole D.J.: Hydrophobins and fungal infection of plants and animals. Trends Microbiol. 5, 405–408 (1997)

23. Gandier J.-A., Master E.R.: Pichia pastoris is a suitable host for the heterologous expression of predicted class I and class II hydrophobins for discovery, study, and application in biotechnology. Microorganisms, 6, 3–23 (2018)

24. Gravagnuolo A.M., Morales-Narváez E., Matos C.R.S., Longobardi S., Giardina P., Merkoçi A.: On-the-spot immobilization of quantum dots, graphene oxide, and proteins via hydrophobins. Adv. Funct. Mater. 25, 6084–6092 (2015)

25. Grove S.N., Bracher C.E., Morre D.J.: An ultrastructural basis for hyphal tip growth in Pythium ultimum. Am. J. Bot. 57, 245–255 (1970)

26. Haas Jimoh Akanbi M., Post E., Meter-Arkema A., Rink R., Robillard G.T., Wang X., Wösten H.A.B., Scholtmeijer K.: Use of hydrophobins in formulation of water insoluble drugs for oral administration. Colloids Surf. B Biointerfaces, 75, 526–531 (2010)

27. Hobleya L., Ostrowski A., Francesco R.V., Keith B. M., Portera M., Prescottd A.R., MacPheeb C.E., van Aaltena D.M.F, Stanley-Walla N.R.: BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc. Natl. Acad. Sci. USA. 110, 13600–13605 (2013)

28. Hou S., Yang K., Qin M., Feng X.-Z., Guan L., Yang Y., Wang C.: Patterning of cells on functionalized poly(dimethylsiloxane) surface prepared by hydrophobin and collagen modification. Biosens. Bioelectron. 24, 918–922 (2008)

29. Houmadi S., Ciuchi F., De Santo M.P., De Stefano L., Rea I., Giardina P., Armenante A., Lacaze E., Giocondo M.: Langmuir-blodgett film of hydrophobin protein from Pleurotus ostreatus at the air-water interface. Langmuir, 24, 12953–12957 (2008)

30. Hungund B., Habib, C., Hiregoudar V., Umloti S., Wandkar S., Tennalli G.: Production and characterization of hydrophobins from fungal source. (w) Biotechnology and Biochemical Engineering. Select Proceedings of ICACE, red. B.D. Prasanna, N.G. Sathyanarayana, V.V. Praven, Springer SBM, Singapore, 2016, s. 48–53

31. Kaufman G., Liu W., Williams D.M., Choo Y., Gopinadhan M., Samudrala N., Sarfati R., Yan E.C.Y., Regan L., Osuji C.O.: Flat drops, elastic sheets, and microcapsules by interfacial assembly of a bacterial biofilm protein, BslA. Langmuir, 33, 13590–13597 (2017)

32. Kerr S.C., Fischer G.J., Sinha M., McCabe O., Palmer J.M., Choera T., Lim F.Y., Wimmerova M., Carrington S.D., Yuan S., Lowell C.A., Oscarson S., Keller N.P., Fahy J.V.: FleA expression in Aspergillus fumigatus is recognized by fucosylated structures on mucins and macrophages to prevent lung infection. PLoS Pathog. 12, 1005555 (2016)

33. Kershaw M.J., Wakley G., Talbot N.J.: Complementation of the mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO J. 17, 3838–3849 (1998)

34. Khalesi M., Gebruers K., Derdelinckx G.: Recent advances in fungal hydrophobin towards using in industry. Protein J. 34, 243–255 (2015)

35. Kisko K.: Characterization of hydrophobin proteins at interfaces and in solutions using X-rays. Academic Dissertation. Acad. Diss. University of Helsinki, Faculty of Science, Department of Physics. (2008)

36. Kottmeier K., Günther T.J., Weber J., Kurtz S., Ostermann K., Rödel G., Bley T.: Constitutive expression of hydrophobin HFB1 from Trichodermareesei in Pichia pastoris and its pre-purification by foam separation during cultivation. Eng. Life Sci. 12, 162–170 (2012)

37. Kubicek C.P., Baker S., Gamauf C., Kenerley C.M., Druzhinina I.S.: Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the Ascomycete Trichoderma/Hypocrea. BMC Evol. Biol. 8, 4–20 (2008)

38. Kulkarni S., Nene S., Joshi K.: Production of hydrophobins from fungi. Process Biochem. 61, 1–11 (2017)

39. Kupski L., Pagnussatt F.A., Buffon J.G., Furlong E.B.: Endoglucanase and total cellulase from newly isolated Rhizopus oryzae and Trichoderma reesei: production, characterization, and thermal stability. Appl. Biochem. Biotechnol. 172, 458–468 (2014)

40. Kwan A.H., Macindoe I., Vukasin P.V., Morris V.K., Kass I., Gupte R., Mark A.E., Templeton M.D., Mackay J.P., Sunde M.: The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. J. Mol. Biol. 382, 708–720 (2008).

41. Ley K., Christofferson A., Penna M., Winkler D., Maclaughlin S., Yarovsky I.: Surface-water interface induces conformational changes critical for protein adsorption: implications for monolayer formation of EAS hydrophobin. Front. Mol. Biosci. 2, 1–12 (2015)

42. Li B., Wang X., Li Y., Paananen A., Szilvay G., Qin M., Wang W., Cao Y.: Single-molecule force spectroscopy reveals self-assembly enhanced surface binding of hydrophobins. Chem. Weinh. Bergstr. Ger. (2018)

43. Li X., Hou S., Feng X., Yu Y., Ma J., Li L.: Patterning of neural stem cells on poly(lactic-co-glycolic acid) film modified by hydrophobin. Colloids Surf. B Biointerfaces, 74, 370–374 (2009)

44. Lienemann M., Grunér M.S., Paananen A., Siika-Aho M., Linder M.B.: Charge-based engineering of hydrophobin HFBI: effect on interfacial assembly and interactions. Biomacromolecules, 16, 1283–1292 (2015)

45. Linder M., Szilvay G.R., Nakari-Setälä T., Söderlund H., Penttilä M.: Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei. Protein Sci. Publ. Protein Soc. 11, 2257–2266 (2002)

46. Linder M.B., Qiao M., Laumen F., Selber K., Hyytiä T., Nakari-Setälä T., Penttilä M.E.: Efficient purification of recombinant proteins using hydrophobins as tags in surfactant-based two-phase systems. Biochem. 43, 11873–11882 (2004)

47. Linder M.B., Szilvay G.R., Nakari-Setälä T., Penttilä M.E.: Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol. Rev. 29, 877–896 (2005)

48. Linder M.B.: Hydrophobins: Proteins that self assemble at interfaces. Curr. Opin. Colloid Interface Sci. 14, 356–363 (2009)

49. Lo V.C., Ren Q., Pham C.L.L., Morris V.K., Kwan A.H., Sunde M.: Fungal hydrophobin proteins produce self-assembling protein films with diverse structure and chemical stability. Nanomaterials, 4, 827–843 (2014)

50. Michelz Beitel S., Fontes Coelho L., Sass D.C., Contiero J.: Environmentally friendly production of D(–) lactic acid by Sporolactobacillus nakayamae: investigation of fermentation parameters and fed-batch strategies. Int. J. Microbiol. 2017, 4851612 (2017)

51. Murray B.S., Dickinson E., Wang Y.: Bubble stability in the presence of oil-in-water emulsion droplets: influence of surface shear versus dilatational rheology. Food Hydrocoll. 23, 1198–1208 (2009)

52. Niu B., Gong Y., Gao X., Xu H., Qiao M., Li W.: The functional role of Cys3-Cys4 loop in hydrophobin HGFI. Amino Acids. 46, 2615–2625 (2014)

53. Niu B., Li B., Wang H., Guo R., Xu H., Qiao M., Li, W.: Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin. Colloids Surf. B Biointerfaces, 150, 344–351 (2017)

54. Niu B., Wang D., Yang Y., Xu H., Qiao M.: Heterologous expression and characterization of the hydrophobin HFBI in Pichia pastoris and evaluation of its contribution to the food industry. Amino Acids. 43, 763–771 (2012)

55. Palomo J.M., Peñas M.M., Fernández-Lorente G., Mateo C., Pisabarro A.G., Fernández-Lafuente R., Ramírez L., Guisán J.M.: Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases. Biomacromolecules, 4, 204–210 (2003)

56. Pawłowska B.K., Sobieszczańska B.M.: Amyloidy, białka powszechne wśród drobnoustrojów. Post. Mikrobiol. 56, 77–87 (2017)

57. Portaccio M., Gravagnuolo A.M., Longobardi S., Giardina P., Rea I., De Stefano L., Cammarota M., Lepore M.: ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for teflon membrane bio-functionalization. Appl. Surf. Sci. 351, 673–680 (2015)

58. Postulkova M., Riveros-Galan D., Cordova-Agiular K., Zitkova K., Verachtert H., Derdelinckx G., Dostalek P., Ruzicka M.C., Branyik T.: Technological possibilities to prevent and suppress primary gushing of beer. Trends Food Sci. Technol. 49, 64–73 (2016)

59. Raffaini G., Milani R., Ganazzoli F., Resnati G., Metrangolo P.: Atomistic simulation of hydrophobin HFBII conformation in aqueous and fluorous media and at the water/vacuum interface. J. Mol. Graph. Model. 63, 8–14 (2016)

60. Richter M.J., Schulz A., Subkowski T., Böker A.: Adsorption and rheological behavior of an amphiphilic protein at oil/water interfaces. J. Colloid Interface Sci. 479, 199–206 (2016)

61. Sallada N.D., Dunn K.J., Berger B.W.: A structural and functional Role for Disulfide Bonds in a Class II Hydrophobin. Biochemistry, 57, 645–653 (2018)

62. Sarlin T., Nakari-Setälä T., Linder M., Penttilä M., Haikara A.: Fungal hydrophobins as predictors of the gushing activity of malt. J. Inst. Brew. 111, 105–111 (2005)

63. Scholtmeijer K., Janssen M.I., Leeuwen M.B.M. van Kooten T.G., van Hektor H., Wosten H.A.B.: The use of hydrophobins to functionalize surfaces. In: Bio-Medical Materials and Engineering. IOS Press. 447–454 (2004)

64. Scholtmeijer K., Wessels J.G., Wösten H.A.: Fungal hydrophobins in medical and technical applications. Appl. Microbiol. Biotechnol. 56, 1–8 (2001)

65. Schor M., Reid J.L., MacPhee C.E., Stanley-Wall N.R.: The diverse structures and functions of surfactant proteins. Trends Biochem. Sci. 41, 610–620 (2016)

66. Schuurs T.A., Schaeffer E., Wessels J.G.: Homology dependent silencing of the SC3 gene in Schizophyllum commune. G. Genetics, 147, 589–596 (1997)

67. Schwarzhans J.-P., Wibberg D., Winkler A., Luttermann T., Kalinowski J., Friehs K.: Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization. Microb. Cell Factories, 15, 84 (2016)

68. Stanimirova R.D, Gurkov T.D., Kralchevsky P.A., Balashev K.T, Stoyanov S.D., Pelan E.G: Surface pressure and elasticity of hydrophobin HFBII layers on the air−water interface: rheology versus structure detected by AFM imaging. Langmuir, 29, 6053−6067 (2013)

69. Stanley-Walla N.R., MacPheeb C.E.: Connecting the dots between bacterial biofilms and ice cream. Phys. Biol. 12, 063001 (2015)

70. Sunde M., Pham C.L.L., Kwan A.H.: Molecular characteristics and biological functions of surface-active and surfactant proteins. Annu. Rev. Biochem. 86, 585–608 (2017)

71. Szilvay G.R., Nakari-Setälä T., Linder M.B.: Behavior of Trichoderma reesei hydrophobins in solution: interactions, dynamics, and multimer formation. Biochem. 45, 8590–8598 (2006)

72. Szilvay G.R., Paananen A., Laurikainen K., Vuorimaa E., Lemmetyinen H., Peltonen J., Linder M.B.: Self-assembled hydrophobin protein films at the air-water interface: structural analysis and molecular engineering. Biochem. 46, 2345–2354 (2007)

73. Tchuenbou-Magaia F.L., Norton I.T., Cox P.W.: Hydrophobins stabilised air-filled emulsions for the food industry. Food Hydrocoll. 23, 1877–1885 (2009)

74. Valo H.K., Laaksonen P.H., Peltonen L.J., Linder M.B., Hirvonen J.T., Laaksonen T.J.: Multifunctional hydrophobin: toward functional coatings for drug nanoparticles. ACS Nano. 4, 1750–1758 (2010)

75. Wang K., Xiao Y., Wang Y., Feng Y., Chen C., Zhang J., Zhang Q., Meng S., Wang Z., Yang H.: Self-assembled hydrophobin for producing water-soluble and membrane permeable fluorescent dye. Sci. Rep. 6, (2016)

76. Wang X., Graveland-Bikker J.F., de Kruif C.G., Robillard G.T.: Oligomerization of hydrophobin SC3 in solution: from soluble state to self-assembly. Protein Sci. Publ. Protein Soc. 13, 810–821 (2004)

77. Wang X., Shi F., Wösten H.A.B., Hektor H., Poolman B., Robillard G.T.: The SC3 hydrophobin self-assembles into a membrane with distinct mass transfer properties. Biophys. J. 88, 3434–3443 (2005)

78. Wang Z., Feng S., Huang Y., Li S., Xu H., Zhang X., Bai Y., Qiao M.: Expression and characterization of a Grifola frondosa hydrophobin in Pichia pastoris. Protein Expr. Purif. 72, 19–25 (2010)

79. Wessels J.G., de Vries O.M., Asgeirsdóttir S.A., Springer J.: The thn mutation of Schizophyllum commune, which suppresses formation of aerial hyphae, affects expression of the Sc3 hydrophobin gene. J. Gen. Microbiol. 137, 2439–2445 (1991)

80. Wessels J.G.H.: Developmental regulation of fungal cell wall formation. Annu. Rev. Phytopathol. 32, 413–437 (1994)

81. Whiteford J.R., Spanu P.D.: Hydrophobins and the interactions between fungi and plants. Mol. Plant Pathol. 3, 391–400 (2002)

82. Wösten H.A., de Vocht M.L.: Hydrophobins, the fungal coat unravelled. Biochim. Biophys. Acta. 1469, 79–86 (2000)

83. Wösten H.A.: Hydrophobins: multipurpose proteins. Annu. Rev. Microbiol. 55, 625–646 (2001)

84. Wösten H.A.B., de Vries O.H.H., Wessels J.G.H.: lnterfacial selfassembly a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell, 5, 1567–1574 (1993)

85. Wösten H.A.B., Scholtmeijer K. Applications of hydrophobins: current state and perspectives. Appl. Microbiol. Biotechnol. 99, 1587–1597 (2015)

86. Wu Y., Li J., Yang H., Shin H.-J.: Fungal and mushroom hydrophobins: A review. J. Mushroom, 15, 1–7 (2017)

87. Wurster S., Thielen V., Weis P., Walther P., Elias J., WaagaGasser A.M., Dragan M., Dandekar T. Einsele H., Löffler J.,Ullmann A.J.: Mucorales spores induce a proinflammatory cytokine response in human mononuclear phagocytes and harbor no rodlet hydrophobins. Virulence, 8, 1708–1718 (2017)

88. Yamasaki R., Takatsuji Y., Asakawa H., Fukuma T., Haruyama T.: Flattened-top domical water drops formed through self-organization of hydrophobin membranes: a structural and mechanistic study using atomic force Microscopy. ACS Nano. 10, 81–87 (2016)

89. Yu L., Zhang B., Szilvay G.R., Sun R., Jänis J., Wang Z., Feng S., Xu H., Linder M.B., Qiao M.: Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers. Microbiol. Read. Engl. 154, 1677–1685 (2008)

90. Zhao L., Xu H., Li Y., Song D., Wang X., Qiao M., Gong M.: Novel application of hydrophobin in medical science: a drug carrier for improving serum stability. Sci. Rep. 6, 26461 (2016)

91. Żuchowska A., Kwiatkowski P., Jastrzębska E., Chudy M., Dybko A., Brzozka Z.: Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins. Electrophoresis, 37, 536–544 (2016)