INDUSTRIAL APPLICATIONS OF WILD AND GENETICALLY-MODIFIED STRAINS OF ACETIC ACID BACTERIA

Publications

Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 0079-4252
eISSN: 2545-3149

DESCRIPTION

22
Reader(s)
86
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 57 , ISSUE 4 (April 2018) > List of articles

INDUSTRIAL APPLICATIONS OF WILD AND GENETICALLY-MODIFIED STRAINS OF ACETIC ACID BACTERIA

Lidia Stasiak-Różańska * / Milena Kupiec

Keywords : AAB, acetic acid, genetic modifications, mutant

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 57, Issue 4, Pages 398-402, DOI: https://doi.org/10.21307/PM-2018.57.4.398

License : (CC BY-NC-ND 4.0)

Published Online: 20-May-2019

ARTICLE

ABSTRACT

Acetic Acid Bacteria (AAB) have been known for many years, since humans first used them to produce vinegar. AAB serve as biocatalysts in industrial production of, inter alia, acetic acid, dihydroxyacetone, gluconic acid, bacterial cellulose or levan. Apart from the traditional industrial applications of wild strains of AAB, scientists strive to develop novel methods for the production of selected compounds using genetically-modified AAB. The application of such mutants in the industry entails both positive and negative aspects. Modifications of the bacterial genome have a significant effect upon the functioning of the entire cell. This review presents industrial applications of metabolites produced by both wild and genetically-modified strains of AAB.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Akasaka N., Sakoda H., Hidese R., Ishii Y., Fujiwarab S.: An Efficient Method Using Gluconacetobacter europaeus To Reduce an Unfavorable Flavor Compound, Acetoin, in Rice Vinegar Production. Appl. Environ. Microbiol. 79, 7334–7342 (2013)

2. Almeida J., Fávaro L.: Quirino B. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol. Biofuel. 5, 5–48 (2012)

3. Battad-Bernardo E., McCrindle S.L., Couperwhite I., Neilan B.A.: Insertion of an E. coli lacZ gene in Acetobacter xylinus for the production of cellulose in whey. FEMS Microbiol. Lett. 231, 253–260 (2004)

4. Bawa A.S., Anilakumar K.R.: Genetically modified foods: safety, risks and public concerns-a review. J. Food. Sci. Technol. 50, 1035–1046 (2013)

5. Chawla P.R., Bajaj B.I., Survase S.A., Singhal R.S.: Microbial Cellulose: Fermentative Production and Applications. Food Technol. Biotechnol. 47, 107–124 (2009)

6. De Roos J., De Vuyst L.: Acetic acid bacteria in fermented foods and beverages. Curr. Opinion Biotechnol. 49, 115–119 (2018)

7. Draelos M.D., Zoe D.: Self-Tanning Lotions: Are they a healthy way to achieve a tan?. Am. J. Clin. Dermatol. 3, 317–318 (2002)

8. Ehrenreich A.: The Genome of Acetic Acid Bacteria (in) Biology of Microorganisms on Grapes, in Must and in Wine, red. H. König, G. Unden, J. Fröhlich, Springer-Verlag, Berlin, 2009, p. 379–394

9. Esa F., Tasirin S.M., Rahman N.A.: Overview of bacterial cellulose production and application. Agric. Agric. Sci. Proc. 2, 113–119 (2014)

10. Fukaya M.: Vinegar: Genetic Improvement of Acetobacter and Gluconobacter, Recombinant Microbes for Industrial and Agricultural Applications, red. Y. Murooka, T. Imanaka, Marcel Dekker, New York, 1994, p. 529–538.

11. Guillamón J.M., Mas A.: Acetic Acid Bacteria (in) Biology of Microorganisms on Grapes, in Must and in Wine, red. H. König, G. Unden, J. Fröhlich. Springer-Verlag, Berlin, 2009, p. 31–46

12. Gullo M., La China S., Falcone P.M., Giudici P.: Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Appl. Microbiol. Biotechnol. DOI: 10.1007/s00253-018-9164-5 (2018)

13. Habe H., Fukuoka,T., Morita T., Kitamoto D., Yakushi T., Matsushita K., Sakaki K.: Disruption of Membrane-Bound Alcohol Dehydrogenase-Encoding Gene Improved Glycerol Use and Dihydroxyacetone Productivity in Gluconobacter oxydans. ISBA, 74, 1391–1395 (2010)

14. Habe H., Sato S., Fukuoka T., Kitamoto D., Sakaki, K.: Effect of Membrane-bound Aldehyde Dehydrogenase-encoding Gene Disruption on Glyceric Acid Production in Gluconobacter oxydans. J. Oleo. Scienc. 63, 953–957 (2014)

15. Habe H., Shimada Y., Fukuoka T., Kitamoto D., Itagaki M., Watanabe K., Yanagishita H., Yakushi T., Matsushita K., Sakaki K.: Use of Gluconobacter frateurii mutant to prevent dihydroxyacetone accumulation during Glyceric Acid Production from Glycerol. Biosci Biotechnol. Biochem. ISBA 74, 2330–2332 (2010)

16. Hallman W., Hebden W., Cuite C., Aquino H., Lang J.: Americans and GM food: knowledge, opinion & interest in 2004. New Brunswick (NJ): Rutgers, the State University of New Jersey, Food Policy Institute Nov Report No. RR-1104–007 (2004)

17. Han L.: Genetically Modified Microorganisms (in) The GMO Handbook, ed. S.R. Parekh, Humana Press, Totowa, 2004

18. Hermann M., Petermeier H., Vogel R.: Development of novel sourdoughs with in situ formed exopolysaccharides from acetic acid bacteria. Europ. Food Res. Technol. 241, 1–13 (2015)

19. Hu S.Q., Gao Y.G., Tajima K., Sunagawa N., Zhou Y., Kawano S., Fujiwara T., Yoda T., Shimura D., Satoh Y., Munekata M., Tanaka I., Yao M.: Structure of bacterial cellulose synthase subunit D octamer with four inner passageways. Proc. Natl. Acad. Sci. USA, 107, 17957–17961 (2010)

20. Jurkiewicz A.: Genetyczne modyfikacje organizmów – biotechnologiczny eksperyment na organizmach żywych. Med. Og. Nauk Zdr. 18, 236–242 (2012)

21. Krajewski V., Simic P., Mouncey N.J., Bringer S., Sahm H., Bott M.: Metabolic Engineering of Gluconobacter oxydans for Improved Growth Rate and Growth Yield on Glucose by Elimination of Gluconate Formation. Appl. Environ. Microbiol. 76, 4369–4376 (2010)

22. Krystynowicz A., Czaja W., Bielecki S.: Biosynthesis and possibilities using of bacterial cellulose. Żywn. Nauk. Technol. Ja. 3, 22–34 (1999)

23. Lin P.S., Calvar I.L., Catchmark J.M., Liu J.R., Demirci A., Cheng K.C.: Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20, 2191–2219 (2013)

24. Lin X., Liu S., Xie G., Chen J., Li P., Chen J. Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydans by Combined Mutagenesis. J. Microbiol. Biotechnol. 26, 1908–1917 (2016)

25. Majewska E., Białecka-Florjańczyk E.: Zielona chemia w przemyśle spożywczym. Chem. Dyd. Ekol. Metrolog. 1, 21–27 (2010)

26. Mamlouk D., Gullo M.: Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation. Ind. J. Microbiol. 53, 377–384 (2013)

27. Marris C.: Public views on GMOs: deconstructing the myths. EMBO reports, 2, 545–548 (2001)

28. Moosavi-Nasab M., Yousefi M.: Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iran J. Biotechnol. 9, 94–101 (2011)

29. Saichana N., Matsushita K., Adachi O., Frébort I., Frébortová J.: Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol. Adv. 33, 1260–1271 (2015)

30. Sanchez S., Demain A.L.: Metabolic regulation and overproduction of primary metabolites. Microbiol. Biotechnol. 1, 283–319 (2008)

31. Santos S.M., Carbajo J.M., Gómez N., Quintana E., Ladero M., Sánchez A., Chinga-Carrasco G., Villar J.C.: Use of bacterial cellulose in degraded paper restoration Part II: application on real samples. J. Mat. Scienc. 51, 1553–1561 (2016)

32. Siso G.: The biotechnological utilization of cheese whey: a review. Biores. Technol. 57, 1–11 (1996)

33. Slapšak N., Cleenwerck I., De Vos P., Trček J.: Gluconacetobacter maltaceti sp. nov., a novel vinegar producing acetic acid bacterium. Syst. Appl. Microbiol. 36, 17–21 (2013)

34. Soemphol W., Toyama H., Moonmangmee D., Adachi O., Matsushita K.: L-Sorbose Reductase and Its Transcriptional Regulator Involved in L-Sorbose Utilization of Gluconobacter frateurii. J.Bacteriol. 189, 4800–4808 (2007)

35. Stasiak-Różańska L., Błażejak S.: Production of dihydroxyacetone from an aqueous solution of glycerol in the reaction catalyzed by an immobilized cell preparation of acetic acid bacteria Gluconobacter oxydans ATCC 621. Eur. Food. Res. Technol. 235, 1125–1132 (2012)

36. Ua-Arak T., Jakob F., Vogel R.F.: Characterization of growth and exopolysaccharide production of selected acetic acid bacteria in buckwheat sourdoughs. Int. J. Food Microbiol. 239, 103–112 (2016)

37. Ua-Arak T., Jakob F., Vogel R.F.I.: Influence of levan-producing acetic acid bacteria on buckwheat-sourdough breads. Food Microbiol. 65, 95–104 (2017)

38. Valera M.J., Torija M.J., Mas A., Mateo E.: Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Appl. Microbiol. Biotechnol. 99, 1349–1361 (2015)

39. Veeravalli S.S., Mathews A.P.: Exploitation of acid-tolerant microbial species for the utilization of low-cost whey in the production of acetic acid and propylene glycol. Appl. Microbiol. Biotechnol. DOI 10.1007/s00253-018-9174-3 (2018)

40. Wang B., Shao Y., Chen F.: Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World J. Microbiol. Biotechnol. 31, 255–263 (2015)

41. Wunderlich S., Gatto K.A.: Consumer Perception of Genetically Modified Organisms and Sources of Information. ASN, 6, 842–851 (2015)

EXTRA FILES

COMMENTS