THANATOMICROBIOME – STATE OF THE ART AND FUTURE DIRECTIONS

Joanna Wójcik1*, Marcin Tomśia2, Artur Drzewiecki1, Rafal Skowronek2

1Scientific Society, School of Medicine in Katowice, Medical University of Silesia
2Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia
3Department of Microbiology, Jagiellonian University in Krakow

Submitted in August 2020, accepted in February 2021

Abstract: Microbiological studies show that there is a possibility of PMI estimation in reference to presence of typical bacteria and fungi on cadaver or in soil beneath. Microbiome after death (thanatomiocomicrobiome) changes and depends on time since death, temperature, seasons and environment- if human remains are covered, buried, placed in ice or left on the surface. To enlarge current knowledge, some of studies are conducted on animal models with further comparison thanatomiocomicrobiome of different animals-pig, rats- to human cadaver thanatomiocomicrobiome. This study collects different branches of thanatomiocomicrobiome studies as a review to summarize current knowledge.

Keywords: bacterial succession, forensic medicine, microbiome, necrobiome, thanatomiocomicrobiome

1. Introduction

Every human has got their own bacterial flora on their skin, in their gastrointestinal tract, genitourinary system and in the oral cavity, which is called the microbiome [44]. The human microbiome is shaped by many different factors – newborn babies’ microbiomes depend on the labor type and way of feeding – natural breast milk or infant formula. Later, the microbiome is related to diet, age, sex, medications taken and diseases. Although microbiome formation varies, in adults, it is relatively stable. The microbiome is characteristic to a living host, but after death, there are specific changes of microbial phyla, genera and families. The microbiome of deceased humans is called the thanatomiocomicrobiome (in Greek mythology Thanatos was the personification of death) [52, 98]. To estimate the PMI (post-mortem interval), a forensic medical examiner uses such indicators as: pallor mortis, algor mortis, rigor mortis, livores mortis, decomposition stages and insect activity – forensic entomology. It is proved that the changes in the thanatomiocomicrobiome are characteristic and repeatable enough to become an additional PMI indicator [98]. Research showed that the sequences of microbial phyla changes are nearly the same among mammals, and thus allow the expansion of the research area to animal models [20, 86]. Microbial communities change not only on cadavers. Burial places and the soil beneath cadavers during decomposition process also undergo microbial phyla changes [31, 88]. Also, like the changes in the thanatomiocomicrobiome, bacteria shifts in soil are characteristic during particular decomposition phases. Different authors distinguish various number of decomposition stages – usually three to five decomposition stages appear in studies: fresh, bloat, active decay, advanced decay and the dry remains stage [1]. For each stage, there is a specified bacterial phyla predominance, and increasing or decreasing bacteria abundance over time [83].

2. Living host microbiome and mycobiome

The skin microbiome consists of four main phyla: Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The most abundant genera are Staphylococcus spp. (mostly S. epidermidis), Corynebacterium, Propionibacterium, Brevibacterium and Micrococcus [42, 67].

In the oral cavity there is tremendous diversity of bacteria [14], predominantly Streptococcus, Veillonella, Fusobacterium, Neisseria, Haemophilus, Propionibacterium, Eikenella, Peptostreptococcus and Eubacteria [67]. Nasal bacteria are Actinobacteria (Propionibacterium and Corynebacterium) and Firmicutes (Staphylococcus spp.) [33, 42].

* Corresponding author: Joanna Wójcik, MD, Scientific Society, School of Medicine in Katowice, Medical University of Silesia, Katowice, ul. Medyków 18, 40-752 Katowice, Poland; 48 32 208 84 37; e-mail: joanna.wojcik.abc@gmail.com
The bronchi and lungs are colonized mostly with four phyla: *Bacteroidetes*, *Firmicutes*, *Proteobacteria* and *Actinobacteria* [67], [Table I]. The most common bacterial taxon in the esophagus is *Streptococcus*. Additionally, *Haemophilus*, *Prevotella*, *Neisseria*, and *Veillonella* may be present [75]. The stomach is inhabited by *Proteobacteria* (*Helicobacter pylori*) and *Firmicutes*. In the intestines, two phyla dominate: *Bacteroidetes* and *Firmicutes*, most of intestinal bacteria are anaerobic: *Bacteroides*, *Bifidobacterium*, *Fusobacterium*, *Eubacterium* and *Ruminococcus* [94]. However, in the intestines, aerobic and obligately anaerobic bacteria are present as well, for instance *Enterobacter* spp., *Escherichia coli*, *Staphylococcus* spp., *Klebsiella* spp. and *Proteus* spp. [60]. In the vagina, the most abundant are *Lactobacillus* (*L. crispatus, L. gasseri, L. iners* oraz *L. jensenii*) [99].

Microbiomes differ between individuals, and are related to diet, age, sex, weight, health status, antibiotic administration or even with cosmetic use [43]. However, during across a one-year observation period, the intestinal microbiome in each host is relatively stable and varies to a small extent [94].

Fungal diversity in the human gut is much lower than bacterial diversity [74]. The most abundant fungal genus in human stool is *Candida*, followed by *Malassezia* and *Saccharomyces* [74]. *Ascomycota* is the most abundant phylum among fungi, not only in the stool but also in the vagina, oral cavity and skin [74]. In the digestive tract, other sources [30, 82] additionally mention the *Cladosporium* and *Cryptococcus* genera, *Eurotiales* order and *Botryosphaeriales* as a popular family.

On the skin, the most abundant are *Malassezia restricta* and *M. furfur*, but *M. globosa*, *M. sympodialis* and *M. pachydermatis* are also frequently present [79]. *Candida* may be component of the skin mycobiome but rarely colonize human skin – usually in diabetic patients or during infections [67]. In the oral cavity, *Candida, Saccharomyces, Penicillium, Scopularis, Geotrichum* and *Aspergillus* are present [25, 26]. The bronchial and lung mycobiome is partially determined by oral and nasal fungi which spread through continuity. Therefore, in lower respiratory tract, the most abundant are: *Cladosporium, Aspergillus, Candida, Malassezia* and *Saccharomyces*. In the genitourinary system, the most common are: *Saccharomyces, Candida, Aspergillus, Cladosporium and Alternaria*.

3. Disease-related differences

During PMI estimation, it is important to know the medical history of the deceased person, because the microbiome in persons suffering from diseases is significantly different than a healthy human microbiome [8, 93].

Chronic alcohol abuse and cirrhosis cause a decrease of *Clostridium* presence and increase of *Proteobacteria* (*Enterobacter*) and *Bacteroides* spp. [93].

<table>
<thead>
<tr>
<th>Skin</th>
<th>Oral cavity</th>
<th>Bronchi lungs</th>
<th>Nasal</th>
<th>Intestine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus</td>
<td>Streptococcus</td>
<td>Pseudomonas</td>
<td>Propionibacterium</td>
<td>Bacteroides</td>
</tr>
<tr>
<td>Corynebacterium</td>
<td>Veillonella</td>
<td>Streptococcus</td>
<td>Corynebacterium</td>
<td>Bifidobacterium</td>
</tr>
<tr>
<td>Propionibacterium</td>
<td>Fusobacterium</td>
<td>Prevotella</td>
<td>Staphylococcus</td>
<td>Fusobacterium</td>
</tr>
<tr>
<td>Brevibacterium</td>
<td>Neisseria</td>
<td>Fusobacterium</td>
<td>Haemophilus</td>
<td>Aureobacterium</td>
</tr>
<tr>
<td>Micrococcus</td>
<td>Haemophilus</td>
<td>Haemophilus</td>
<td>Veillonella</td>
<td>Rhodococcus</td>
</tr>
<tr>
<td>Eikenella</td>
<td>Propionibacterium</td>
<td>Porphyromonas</td>
<td>Propionibacterium</td>
<td>Bacteroides</td>
</tr>
<tr>
<td>Peptostreptococcus</td>
<td>Eubacteria</td>
<td></td>
<td>Corynebacterium</td>
<td>Bifidobacterium</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fusobacterium</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eubacterium</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ruminococcus</td>
</tr>
</tbody>
</table>

Table I
Human microbiome in regard to body areas

<table>
<thead>
<tr>
<th>Skin</th>
<th>Oral cavity</th>
<th>Bronchi lungs</th>
<th>Nasal</th>
<th>Intestine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malassezia furfur</td>
<td>Candida</td>
<td>Aspergillus</td>
<td>Candida</td>
<td>Candida</td>
</tr>
<tr>
<td>M. restricta</td>
<td>Saccharomyces</td>
<td>Candida</td>
<td>Saccharomyces</td>
<td>Saccharomyces</td>
</tr>
<tr>
<td>M. globosa</td>
<td>Penicillium</td>
<td>Cladosporium</td>
<td>Malassezia</td>
<td>Cladosporium</td>
</tr>
<tr>
<td>M. sympodialis</td>
<td>Scopularis</td>
<td>Malassezia</td>
<td>Alternaria</td>
<td>Malassezia</td>
</tr>
<tr>
<td>M. pachydermatis</td>
<td>Aspergillus</td>
<td>Saccharomyces</td>
<td>Cladosporium</td>
<td>Eurotiales</td>
</tr>
<tr>
<td>Candida</td>
<td>Cryptococcus</td>
<td>Penicillium</td>
<td></td>
<td>Botryosphaeriales</td>
</tr>
<tr>
<td></td>
<td>Fusarium</td>
<td></td>
<td></td>
<td>Filobasidiales</td>
</tr>
<tr>
<td></td>
<td>Alternaria</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skin</th>
<th>Oral cavity</th>
<th>Bronchi lungs</th>
<th>Genitourinary system</th>
<th>Intestine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida</td>
<td>Aspergillus</td>
<td>Candida</td>
<td>Malassezia</td>
<td>Candida</td>
</tr>
<tr>
<td>Saccharomyces</td>
<td>Candida</td>
<td>Candida</td>
<td>Saccharomyces</td>
<td>Malassezia</td>
</tr>
<tr>
<td>Penicillium</td>
<td>Cladosporium</td>
<td>Malassezia</td>
<td>Aspergillus</td>
<td>Cladosporium</td>
</tr>
<tr>
<td>Scopularis</td>
<td>Malassezia</td>
<td>Alternaria</td>
<td>Cladosporium</td>
<td>Malassezia</td>
</tr>
<tr>
<td>Geotrichum</td>
<td></td>
<td></td>
<td></td>
<td>Eurotiales</td>
</tr>
<tr>
<td>Aspergillus</td>
<td></td>
<td></td>
<td></td>
<td>Botryosphaeriales</td>
</tr>
<tr>
<td>Cryptococcus</td>
<td></td>
<td></td>
<td></td>
<td>Filobasidiales</td>
</tr>
<tr>
<td>Fusarium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table II
Human mycobiome in regard to body areas
Diabetes mellitus patients showed a higher abundance of Bacteroidetes and lower percentage of Firmicutes in the intestinal microbiota [79]. Necrotizing enterocolitis is correlated with high abundance of Proteobacteria [8].

Alzheimer’s disease corresponds to an abundance of Bacteroides fragilis and Escherichia coli and their neurotoxin, and the presence of bacterial lipopolysaccharide (LPS) in the brain in the hippocampal area [97]. Allergies, cardiovascular diseases, cancer, psychiatric diseases and metabolic syndrome also affect the host microbiome [8].

Although there are no studies considering mistakes in PMI estimation caused by cadavers illnesses, individual abnormalities of quantity or phyla abundance can be compared with characteristic differences in particular disease. If the medical history of the cadaver is known, time since death can be confirmed more precisely, with bacterial number or presence deviation clarified by illness.

4. Thanatomiobiome – human cadaver studies

A basic difficulty during cadaver studies is the cessation of natural barrier protection. After death, intestinal bacteria can move to the blood and tissues. Additionally other types of bacteria also begin to spread around the entire corpse. This is caused by tissue congestion, vessel enlargement and the unsealing of cell junctions. As a result, organs considered to be sterile can become settled by bacteria, and tissues where there is a specific microbiota can be contaminated by bacteria from other areas. For this reason, the longer the time since death, the lower the accuracy of the research.

Damann et al. [18] analyzed ribs of 12 human cadavers and divided decomposition into 3 phases – partially skeletonized, skeletonized and dry remains. It was proved that in two of the prime phases, the thanatobiome was similar to a living human gut microbiome, while the dry remains phase was characterized by a thanatobiome more similar to soil bacterial communities, but was not identical [18]. The partially skeletonized and skeletonized stages had a high abundance of Firmicutes and Proteobacteria. During decomposition, Firmicutes decreased while Proteobacteria and Actinobacteria started increasing. In contrast to soil samples, cadaver thanatomiobiomes in the last phase had higher levels of Actinobacteria, Bacteroidetes, Proteobacteria and Firmicutes and a smaller quantity of Acidobacteria.

DeBruyn et al. [56] divided decomposition into 2 phases, and showed that at the beginning, Bacteroidetes and Firmicutes predominated. In the late phase of decomposition, Firmicutes was still in abundance, while Bacteroidetes decreased and Ignatzschineria increased.

Table III

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum</td>
<td>Firmicutes</td>
<td>Proteobacteria</td>
</tr>
<tr>
<td>Class</td>
<td>Bacilli</td>
<td>Gammaproteobacteria</td>
</tr>
<tr>
<td>Order level</td>
<td>Lactobacillales</td>
<td>Pseudomonadales</td>
</tr>
<tr>
<td>Genus</td>
<td>Streptococcus</td>
<td>Lactobacillus</td>
</tr>
<tr>
<td>Species</td>
<td>Clostridium spp.</td>
<td></td>
</tr>
</tbody>
</table>

Mouth thanatomiobiomes also vary in time – to start with, the main phyla were Firmicutes and Actinobacteria, while during bloat stage there was an increased number of Tenericutes, and growth of Ignatzschineria was also remarkable. Dry remains were characterized by a increase of Firmicutes with an abundance of Clostridiales and Bacillaceae [77].

Although an increasing number of studies widen the knowledge about thanatomiobiome changes, it is worth noticing that scientists discover some differences related to illnesses or sex. For instance, Bell et al. [5] proved differences between the thanatomiobiomes in male and female heart samples [53], taken from 10 cadavers and analyzed 6–58 h since death [Table III]. In male hearts, most abundant phyla was Firmicutes, while in females Proteobacteria predominated, Bacteroidetes was in similar quantity in both sexes. Bacilli and Streptococccaceae were detected almost solely in males. Lactobacillales, Rhizobiales were found only in males, while Pseudomonadales and Gammaproteobacteria were more abundant in female hearts samples. Clostridium sp. was present in both sexes in a similar percentage. Clostridium was present in almost all cadaver samples [53]. There is rapid overgrowth after death, because Clostridium have the shortest doubling time. Bacteroides and Lactobacillus spp. decreased as far as decomposition progressed [39].

5. Fungi presence – thanatomiobiome

Although most thanatomiobiome studies focus on bacteria, studies about fungal presence can be equally as important in PMI estimation in both humans and animals [13]. Human cadaver research is less frequent due to legal reasons and smaller number of donors, therefore animal research allows to extend more general knowledge on the subject. However, animal PMI estimation is also used independently in forensic veterinary medicine [92].
Table IV
Predominant phyla in 3 decomposition stages in particular corpse parts in order to frequency of appearance

<table>
<thead>
<tr>
<th>Hair</th>
<th>Skin</th>
<th>Mucosa</th>
<th>Lungs</th>
<th>Bones</th>
<th>Clothes</th>
<th>Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloated</td>
<td>A. flavus</td>
<td>A. flavus</td>
<td>A. flavus</td>
<td>A. flavus</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>A. niger</td>
<td>A. niger</td>
<td>A. niger</td>
<td>A. niger</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>P. rugulosum</td>
<td>P. rugulosum</td>
<td>P. rugulosum</td>
<td>Penicillium spp.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Putrefaction</td>
<td>A. flavus</td>
<td>A. flavus</td>
<td>C. albicans</td>
<td>C. albicans</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>A. niger</td>
<td>C. albicans</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Penicillium spp.</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>A. niger</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>A. flavus</td>
<td>A. flavus</td>
</tr>
<tr>
<td></td>
<td>Penicillium spp.</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>A. niger</td>
<td>A. niger</td>
</tr>
</tbody>
</table>

Research based on human studies showed fungi presence during three stages of decomposition (bloated, putrefaction and skeletonization) [83]. Samples were taken from the cadaver’s mouth, skin, rectum, vagina, lungs and grave soil or coffin fragments. In the bloated stage, *Aspergillus flavus* was dominating, followed by *Aspergillus niger* and *Penicillium rugulosum* in all sampling locations. In the purification stage, *Candida albicans* dominated in most samples, except hair, in which the fungal pattern was the same as in bloated stage. The skeletonized stage was dominated by *Penicillium*, with presence of *Aspergillus flavus* and *Aspergillus niger* [Table IV].

Tranchida et al. [90] describes human cadavers in an advanced decomposition stage. In soil samples beneath the remains, *Talaromyces udagawae* (Aspergillaceae), registered as human pathogen, was detected, while in control soil samples, there was no signs of *T. udagawae*. In soil samples from under the cadaver, *Dichotomomyces cejpii* and *Talaromyces trachyspermus* were also found. Other fungi – *Mortierella*, *Mucor hiemalis*, *Aspergillus* and *Penicillium frequentas* were detected in control soil samples taken 15 meters from the cadaver.

Xiaoliang Fu et al. [35] presented differences between fungal succession during decomposition inside and outside, using pigs carcasses. During the decomposition of 3 pigs indoors, *Candida xylopsoci*, *Ascomycota* spp. and *Thermoascus aurantiacus* dominated. The outdoor carcasses decomposed faster and the dominating fungi was *Yarrowia lipolytica*. In soil samples from beneath the carcasses, *Yarrowia lipolytica* and *Candida catenulate* dominated. During the initial decomposition stage, fungal succession on carcasses were similar but as decay proceeded, indoor and outdoor fungal succession started to vary.

6. Thanasomaticbiome of frozen cadavers

A distinct issue is the thanasomaticbiome after long-term freezing. Hyde et al. [46] described 2 donated cadavers, the first frozen for 89 days, and the second for 143 days. In both cadavers, most popular phyla in the mouth was *Firmicutes*, followed by *Actinobacteria* on the first cadaver and *Proteobacteria* on the second one. As decomposition progressed, *Actinobacteria* decreased and *Proteobacteria* increased on the first cadaver. A second case, also presented by Hyde [47], described 2 cadavers, one frozen for 22 days and the second for 14 days. *Firmicutes* and *Actinobacteria* increased in the later phases of decomposition. *Firmicutes* and *Bacteroides* predominated in fecal samples before purge, while later stages of decomposition were dominated by *Proteobacteria*. There were differences between the thanasomaticbiome genus in the two cadavers in Hyde's second research – the first cadaver was dominated by *Ignatzenschineria*, *Acinetobacter* and *Pseudomonas*, while in the second cadaver, *Clostridium*, *Acinetobacter* and *Ignatzenschineria* predominated. A third piece of research by Pechal et al. [78] was performed on 2 cadavers of children, aged 9 and 13, murdered and frozen by mother. In contrast to previous research, in this one, there were observed differences between bacterial diversity during the thawing process. While thawing, *Actinobacteria*, *Fusobacteria* and *Gammaproteobacteria* increased, and *Firmicutes* decreased. In reference to families – *Corynebacteriaceae*, *Fusobacteriaceae*, *Pasteurellaceae*, *Pseudomonaceae* and *Tissierllaceae* significantly increased, in contrast to *Prevotellaceae* and *Staphylococcaceae* which decreased.

7. Soil microbial community changes

Soil microbial communities are quite different in comparison to the human microbiome. This knowledge is crucial, because there is the possibility to prove the former presence of a buried or decomposing cadaver based on microbial changes in soil [84]. A second option is estimating PMI by defining microbial communities on remains which are different in decomposition stages and are more similar to soil communities in late stages. Comparison of microbiome changes in the soil requires the appropriate collection of samples to differentiate soil.
related to thanatombiome changes and a comparative soil sample, which is pure soil without contact with a cadaver and its thanatombiome [90]. Proper sample collection includes taking soil samples right beneath the cadaver (0–5 cm) [17, 31, 84, 90] and control samples. A crucial assumption is receiving soil samples without contact with cadaver – most frequent distances, considered to be adequate, used in soil thanatombiome studies are 1 m, 5 m and 15 m from the body [84, 90, 91].

Garriga et al. [2] proved that different bacterial phyla appear in particular decomposition stages, at first, *Proteobacteria*, *Acidobacteria* and *Bacteroidetes* predominate, while in later phases *Firmicutes*, *Actinobacteria* and *Proteobacteria* are more abundant, and finally *Firmicutes* and *Protoctista* are the most common [2, 30].

Finley et al. [31] described a one-year observation of soil microbiota beneath cadavers. Cadavers were divided into two groups – one was cadavers on the surface and the second group was buried bodies. In both groups, the predominant phylum was *Proteobacteria*, but in group of buried cadavers, the quantity of these bacteria was lower. *Acidobacteria* in the buried group was more abundant than in the surface group and in control samples. After 9 months, *Firmicutes* in the surface group was predominant phylum, in contrast to buried group and controls, where the amount of *Firmicutes* was low. *Acidobacteria* and *Verrucomicrobia* were more abundant in the buried group.

Singh et al. [84] proved that the soil microbiome beneath cadavers is significantly different than the soil microbiome 1 m and 5 m from the cadaver. Right below the cadaver, the relative abundance of *Firmicutes* and *Bacteroidetes* was greater, but the amounts of *Verrucomicrobia*, *Acidobacteria*, *Chloroflexi* and *Gemmatimonadetes* were smaller. All of the cadavers were placed on a field, and the research included 732 days of sampling.

Cobraugh et al. [17] in research on four cadavers compared gut bacteria communities and soil microbiota beneath cadavers. The cadavers’ most abundant phyla were *Bacteroidetes* and *Firmicutes*, while in soil samples, the most common were *Proteobacteria*, *Actinobacteria* and *Firmicutes*. *Actinobacteria* and *Firmicutes* increased while decomposition progressed, in contrast to *Acidobacteria* and *Verrucomicrobia* which decreased.

There is also research on swine buried models [80], and in the soil samples, *Proteobacteria* was most abundant phylum, while the second most abundant phylum was *Bacteroidetes*, with *Firmicutes* increasing in later phases of decomposition. Control soil samples showed a predominance of *Acidobacteria*. Soil beneath the carcasses contained a reduced quantity of *Acidobacteria* but this phenomenon fluctuated in time and when pH raised, *Acidobacteria* abundance increased.

Rabbit decomposition research [92] demonstrated a predominant abundance of *Proteobacteria*, with a presence of *Bacteroidetes* and *Actinobacteria*. An interesting fact is that *Actinobacteria* was in higher abundance during early stages of decomposition, and in the group of rabbits with fur, the abundance of this phylum was definitely higher than in the bald rabbit group. In later stages of decomposition, the percentage of *Actinobacteria* in soil samples was nearly equal in both groups.

8. Season-related microbial changes

Research on rat carcasses considered different decomposition patterns and microbiota in relation to different seasons. In the spring, swabs taken from the small intestine of carcasses showed that the predominant phylum was *Proteobacteria*, followed by *Firmicutes*. In the summer, the predominant phylum was *Firmicutes*. It is noticed that *Enterococcus faecalis* had different growth patterns in the spring and summer, but ultimately in both seasons, the abundance in carcasses was similar [48].

Benbow et al. [6] in research on swine carcasses in a river proved that there are some differences in decomposition during different seasons. The generally predominant phylum was *Proteobacteria* followed by *Firmicutes* and *Bacteroidetes*. In the summer, the decrease of *Proteobacteria* was slower than in the winter. In the winter, while decomposition progressed, *Firmicutes* abundance was, in general, higher than in the summer. In contrast to *Firmicutes*, *Bacteroidetes* was more abundant in the summer during all decomposition stages.

Another research on swine carcasses in water in the autumn and winter [23] showed that there are some bacteria which are season-specific. *Carnobacterium*, *Marinomonas*, *Aeromonas* and *Bacteroides* Genus 2 and 8 were present in autumn exclusively. *Polaribacter* and *Bacteroides* Genus 4 were distinctive for winter.

9. Thanatomicrobiome and entomology correlation

After death, not only bacteria exist and graze on cadavers. Within minutes, chemical signals attract the first necrophagous flies [89]. *Calliphora vomitoria* and *Lucilia sericata* are the most numerous insects in Europe detected on cavers, attracted by decomposition odor [34]. Odors are chemical signals, which appear while bacteria start producing postmortem compounds. Bacteria are capable of producing or decomposing substances like indole, ammonia, putrescine, and benzoic acid during cadaver decomposition [66]. Different substances attract various necrophagous flies, but ammonia is considered to be the interkingdom signal
that controls the activity of bacteria and blow flies [66].
Also, there is a correlation between insect and bacteria
genus occurrence on cadavers [Table V] [89]. Relations
between bacteria and blowflies work both ways – some
bacteria, like Proteus mirabilis, occur on cadavers, trans-
ferred by the salivary glands of blowfly Lucilia sericata.
The burying beetle transfers its own gut microbiome
onto the cadaver – Morganella, Proteus, Providencia,
Vagococcus, Xanthomonadaceae and Tissirella [95]. On
the other hand, insects, like burying beetles, struggle
to obtain the carbohydrates, lipids and proteins present
in the cadaver. For this purpose, insects participate in
spreading oral secretions that have antibacterial activity,
helping to restrain bacterial proliferation [95].
Studies in general focus on the presence of insects
on cadavers or on the thanatobiome, and there is
only a few examples of research on how both bacteria
and insect presence are related [34], [89]. It is clear that
presence of some insects entails the appearance of some
bacteria phyla and vice versa [89], but future studies
may be able to clarify the correlation in later phases of
decomposition and enable a precise definition of rela-
tions between the development of thanatobiome
phyla and insects in particular decomposition stages.

<table>
<thead>
<tr>
<th>Insect</th>
<th>Necrophagous flies in general</th>
<th>Sacrophaga spp.</th>
<th>Lucilia cuprina</th>
<th>Sacrophaga spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria genus</td>
<td>Staphylococcus</td>
<td>Streptococcus</td>
<td>Staphylococcus</td>
<td>Bacillus</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus</td>
<td>Proteus</td>
<td>Proteus</td>
<td>Providencia</td>
</tr>
<tr>
<td></td>
<td>Morganella</td>
<td>Ignatzschineria</td>
<td>Ignatzschineria</td>
<td>Escherichia</td>
</tr>
<tr>
<td></td>
<td>Escherichia</td>
<td>Bacillus</td>
<td>Bacillus</td>
<td>Enterococcus</td>
</tr>
<tr>
<td></td>
<td>Micrococcus</td>
<td>Ochrobactrum</td>
<td>Ochrobactrum</td>
<td>Ochrobactrum</td>
</tr>
</tbody>
</table>

10. Conclusions

Over the years, knowledge about microbiome
changes decisively increased. A constantly rising num-
ber of scientific studies and research leads to the possi-
bility of PMI estimation using the thanatobiome.
Nowadays, we can distinguish three to five decomposi-
tion stages basing on cadaver microbiomes and bacterial
community shifts during decay. Moreover, distinctive
microbiome changes in the soil beneath the remains,
either on the surface or soil beside a buried cadaver,
can equally precisely determine the time since death.
Distinctive differences occur in thanatobiome
changes in water or during the thawing process too.
In addition, the microbiome on the cadaver is dependent
on the season. Some bacteria can be transferred onto
the cadaver by necrophagous insects. Furthermore, the
microbiome is not the only indicator we can use in PMI
estimations, as fungal changes after death (thanatomy-
cobiome) are also characteristic and specific to different
decomposition stages and body parts.

Some research focuses on differences between
human decomposition and animal models. The final
correlation is that there is a sufficient similarity in dif-
ferent mammal decomposition stages, and process to
expand animal model’s records to believable conclu-
sions for the human cadaver decomposition model.

References

1. Adlam R.E., Simmons T: The effect of repeated physical distur-
ance on soft tissue decomposition – are taphonomic studies
an accurate reflection of decomposition? J. Forensic Sci. 52,
1007–1014 (2007)
2. Adserias-Garriga J., Hernandez M., Quijada N.M., Lazaro D.R.,
Steudman D., Garcia-Gil J: Daily thanatobiome changes
in soil as an approach of postmortem interval estimation:
3. Adserias-Garriga J., Hernandez M., Quijada N.M., Lazaro D.R.,
Steudman D., Garcia-Gil J: Dynamics of the oral microbiota
as a tool to estimate time since death. Mol. Oral Microbial. 32,
511–516 (2017)
4. Barton P.S., Reboldi A., Dawson B.M., Ueland M., Strong C.,
Wallman J.F: Soil chemical markers distinguishing human and
5. Bell C.R., Wilkinson J.E., Robertson B.K., Javan G.T.: Sex-rela-
ted differences in the thanatobiome in postmortem heart
Microbiol. 67, 144–153 (2018)
potential of high-throughput metagenomic sequencing of aqua-
tic bacterial communities to estimate the postmortem submer-
of soil beneath a decomposing carcass. Forensic Sci. Int. 180,
70–75 (2008)
(2017)
9. Burcham Z.M., Cowick C.A., Baughner C.N., Pechal J.L.,
Schmidt C.J., Rosch J.W., Benbow M.E., Jordan H.R.: Total
RNA analysis of bacterial community structural and functional
shifts throughout vertebrate decomposition. J. Forensic Sci. 64,
1707–1719 (2019)
Schmidt C.J., Benbow M.E., Jordan H.R.: Fluorescently labeled