Silesian University of Technology
Subject: Architecture , Civil Engineering , Engineering, Environmental
ISSN: 1899-0142
SEARCH WITHIN CONTENT
Keywords : Heat transfer, Perturbation numbers, Perturbed parameters
Citation Information : Architecture, Civil Engineering, Environment. Volume 9, Issue 1, Pages 95-100, DOI: https://doi.org/10.21307/acee-2016-010
License : (BY-NC-ND 4.0)
Published Online: 09-August-2018
This paper describes the issue of unidirectional temperature distribution in a plate with the assumption of perturbations in the problem parameters. The new algebraic perturbation system is proposed as a possible alternative to the traditional I-order perturbation methods. A calculation example is presented to compare the classical solution of a problem with that using perturbation numbers. The investigation of a possibility to apply the new algebraic system using a simple example represents an introduction to the further development of the proposed methodology which can be used to solve more com-
plicated problems, taking into account among other properties, inhomogeneity of material, its porosity or the occurrence of thermal bridges.
Aziz A., Na T. Y.; Perturbation Methods in Heat Transfer. Hemisphere Publishing Corporation, USA; 1984
Czél B., Woodbury K. A., Gróf G.; Simultaneous estimation of temperature-dependent volumetric heat capacity and thermal conductivity functions via neural networks. International Journal of Heat and Mass Transfer, Vol.68, 2014, p.1-13
Modelowanie numeryczne pól temperatury (Numerical modelling of thermal fields). Ed.: Szargut J., Wydawnictwo Naukowo-Techniczne, Warszawa, 1992 (in Polish)
Shi M., Li X., Chen Y.; Determination of effective thermal conductivity for polyurethane foam by use of fractal method. Science in China Series E: echnological Sciences, Vol.49, No.4, 2006; p.468-475
Singh R., Bhoopal R.S., Kumar S.; Prediction of effective thermal conductivity of moist porous materials using artificial neural network approach. Building
and Environment, Vol.46, 2011; p.2603-2608
Skrzypczyk J.; Perturbation methods – New arithmetic. Zeszyty Naukowe Politechniki Śląskiej – Budownictwo, Gliwice, 2003; p.391-398
Skrzypczyk J.; Metody perturbacyjne – Nowa arytmetyka (Perturbation methods – New arithmetic). Zeszyty Naukowe Katedry Mechaniki Stosowanej
Politechniki Śląskiej, Vol.23, Gliwice, 2004; p.363-368 (in Polish)
Skrzypczyk J.; Winkler-Skalna A.; Sound Wave Propagation Problems New Perturbation Methodology. Archives of Acoustic, Vol.31, No.4 Supl., 2006; p.115-122
Skrzypczyk J.; Metody perturbacyjne I, Nowa metodologia algebraiczna, Zastosowania w mechanice i akustyce (Perturbation methods I, New algebraic methodology. Applications in mechanics and acoustics). Wydawnictwo Politechniki Śląskiej, Gliwice, 2010 (in Polish)
Taler J., Duda P.; Rozwiązywanie prostych i odwrotnych zagadnień przewodzenia ciepła (Solution of direct and inverse problems of heat conduction). Wydawnictwa Naukowo-Techniczne, Warsaw, 2003 (in Polish)
Villatoro F.R., Perez J., Santander J.L.G., Borovsky M.A., Ratisf Yu.L., Izzheurov E.A., Fernandez de Cordoba P.; Perturbation analysis of the heat transfer in porous media with small thermal conductivity. Journal of Mathematical Analysis and Applications, Vol.374, 2011; p.57-70
Winkler-Skalna environment A.; Propagation new interval of sound perturbation waves in methodology. Proc. 55th Open Seminar on Acoustics,
Wrocław-Piechowice, 2008; p.523-528
Xia D., Guo S., Ren L.; Fractal structure reconstruction for aluminasilicate refractory fiber and simulation of the thermal conductivity. Journal of Thermal
Science, Vol.19, No.1, 2010; p.80-86
Zhu F., Cui S., Gu B.; Fractal analysis for effective thermal conductivity of random fibrous porous materials. Physics Letters A, Vol.374, 2010, p.4411-4414