Silesian University of Technology
Subject: Architecture , Civil Engineering , Engineering, Environmental
ISSN: 1899-0142
SEARCH WITHIN CONTENT
Stanisław KOTER / Çağlar GÜLER / Izabela KOTER
Keywords : Electrodialysis, Chronopotentiometry, Limiting current, Current efficiency
Citation Information : Architecture, Civil Engineering, Environment. Volume 9, Issue 3, Pages 129-133, DOI: https://doi.org/10.21307/acee-2016-042
License : (BY-NC-ND 4.0)
Received Date : 01-April-2016 / Accepted: 11-May-2016 / Published Online: 26-August-2018
Classical and chronopotentiometric characterization of the electrodialysis module at the same concentrations of diluate and concentrate was performed. Limiting current was determined from the Cowan-Brown plot, the current efficiency and the mean transport number of counterions – from the concentration changes on the exit of the ED module. The electric resistance was determined from the chronopotentiometric curve. For electric currents higher than the limiting one, the transition time (inflection point) was observed. Thus, having such curves for different values of electric current, the limiting current can be roughly estimated. To estimate a mean counterion transport number from the transition time, an equation, analogous to the Sand equation, should be developed which include both types of membrane.
[1] Kołtuniewicz A.B., Drioli E.; Membranes in Clean Technologies, Theory and Practice, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008
[2] Koter S.; Ion-Exchange Membranes for Electrodialysis. A Patents Review, Recent Patents on Chemical Engineering, 2011, 4; p.141-160
[3] Block M., Kitchener J.A.; Polarization phenomena in commercial ion-exchange membranes, J. Electrochem. Soc., 1966, 113, p.947-953
[4] Brennen K.R., Hills G.J.; Chronopotentiometric evaluation of membrane performance, in: Biological Aspects of Electrochemistry, Vol.18 of the series Experientia Supplementum, G.Milazzo, P. Jones, L. Rampazzo (Eds.), Springer Basel AG, 1971; pp.183-194
[5] Gnusin N.P., Zabolotskii V.I., Shel’deshov N.V., Krikunova N.D.; Study of the bipolar membrane MB-1 in salt solutions by a chronopotentiometric method, Electrokhimiya, 1980, 21; p.152
[6] Audinos R., Pichelin G.; Characterization of electrodialysis membranes by chronopotentiometry, Desalination 68 (1988) p.251-263
[7] Taky M., Pourcelly G., Gavach C., Elmidaoui A.; Chronopotentiometric response of a cation exchange membrane in contact with chromium(III) solutions, Desalination, 1996, 105; p.219-228
[8] Sistat P., Pourcelly G.; Chronopotentiometric response of an ion-exchange membrane In the underlimiting current-range. Transport phenomena within the diffusion layers, J. Membr. Sci., 1997, p.123, 121-131
[9] Długołęcki P., Anet B., Metz S.J., Nijmeijer K., Wessling M.; Transport limitations in ion exchange membranes at low salt concentrations, J. Membr. Sci., 2010, 346, p.163-171
[10] Krol J.J., Wessling M., Strathmann H.; Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes, J. Membr. Sci., 1999, 162, p.155-164
[11] Pawlowski S., Sistat P., Crespo J.G., Velizarov S.; Mass transfer in reverse electrodialysis: Flow entrance effects and diffusion boundary layer thickness, J. Membr. Sci., 2014, 471, p.72-83
[12] Mitko K., Turek M.; Concentration distribution along the electrodialyzer, Desalination, 2014, 341, p.94-100
[13] Cowan D.A., Brown J.H.; Effect of turbulence on limiting current in electrodialysis cells, Industrial And Engineering Chemistry, 1959, 51(12), p.1445-1448
[14] Geraldes, V., Afonio M. D.; Limiting current density in the electrodialysis of multi-ionic solutions, J. Membr. Sci., 2010, 360(1-2), p.499-508
[15] Koter, S., Chojnowska, P., Szynkiewicz, K., Koter, I.; Batch electrodialysis of ammonium nitrate and sulfate solutions, J. Membr. Sci., 2015, 496; p.219-228
[16] Koter S.; Analysis of an electrodialysis unit on the basis of irreversible thermodynamics, Desalination, 1994, 95; p.139-153