OPTIMIZATION OF TRUSSES WITH SELF-ADAPTIVE APPROACH IN GENETIC ALGORITHMS

Publications

Share / Export Citation / Email / Print / Text size:

Architecture, Civil Engineering, Environment

Silesian University of Technology

Subject: Architecture , Civil Engineering , Engineering, Environmental

GET ALERTS

ISSN: 1899-0142

DESCRIPTION

14
Reader(s)
35
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 9 , ISSUE 4 (December 2016) > List of articles

OPTIMIZATION OF TRUSSES WITH SELF-ADAPTIVE APPROACH IN GENETIC ALGORITHMS

Krzysztof GRYGIEREK

Keywords :  Fuzzy logic, Genetic algorithm, Optimization, Self-adaptive, Truss

Citation Information : Architecture, Civil Engineering, Environment. Volume 9, Issue 4, Pages 67-78, DOI: https://doi.org/10.21307/acee-2016-053

License : (BY-NC-ND 4.0)

Received Date : 07-December-2015 / Accepted: 19-September-2016 / Published Online: 27-August-2018

ARTICLE

ABSTRACT

This paper presents a genetic algorithm method for the optimization of the weight of steel truss structures. In the method of genetic algorithm integer encoding of a discrete set of design variables and novel self-adaptive method based on fuzzy logic mechanism are applied for improving the quality and speed of optimization. Self-adaptive method is applied simultaneously in the selection of chromosomes and to control basic parameters of genetic algorithm. The algorithm proposed in the work was tested on the examples of optimization of steel trusses. Obtained results proved the effectiveness of genetic algorithm in relation to classical genetic algorithm.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] Blachut J., Eschenauer H.A.; Emerging methods for multidisciplinary optimization. CISM No.425. Springer, Wien, New York, 2001

[2] Goldberg D.E.; Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company, Inc., 1989

[3] Coello C.A., Christiansen A.D.; Multiobjective optimization of trusses using genetic algorithms. Computers and Structures, Vol.75, 2000; p.647-660

[4] Grygierek K.; Samoadaptacyjna metoda algorytmów genetycznych w optymalizacji przestrzennych kratownic (Self-adaptive method of genetic algorithm in optimization of spatial truss structures). Modelowanie Inżynierskie, Vol.52, 2014; p.80-86 (in Polish)

[5] Erbatur F., Hasancebi O., Tutuncu I., Kilic H.; Optimal design of planar and space structures with genetic algorithms. Computers and Structures, Vol.75, 2000; p.209-224

[6] Degertekin S.O., Saka M.P., Hayalioglu M.S.; Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm. Engineering Structures, Vol.30, 2008; p.197-205

[7] Hayalioglu M.S.; Optimum design of geometrically non-linear elastic-plastic steel frames via genetic algorithm. Computers and Structures, Vol.77, 2000; p.527-538

[8] Daloglu A.T., Artar M., Ozgan K., Karakas A.; Optimum design of steel space frames including soilstructure interaction. Structural and Multidisciplinary Optimization, Vol.54, 2016; p.117-131

[9] Ali N.B., Sellami M., Cutting-Decelle A.F., Mangin J.C.; Multi-stage production cost optimization of semirigid steel frames using genetic algorithms. Engineering Structures, Vol.31, 2009; p.2766-2778

[10] Cheng J.; Optimum design of steel truss arch bridges using a hybrid genetic algorithm. Journal of Constructional Steel Research, Vol.66, 2010; p.1011-1017

[11] Kwak H.G., Kim J.; An integrated genetic algorithm complemented with direct search for optimum design of RC frames. Computer-Aided Design, Vol.41, 2009; p.490-500

[12] Lim J.C., Karakus M., Ozbakkaloglu.; Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming. Computers & Structures, Vol.162, 2016; p.28-37

[13] Kawamura, H., Ohmori, H., Kito, N.; Truss topology optimization by a modified genetic algorithm. Structural and Multidisciplinary Optimization, Vol.23, 2002; p.467-472

[14] Hajela P., Lee E.; Genetic algorithms in truss topological optimization. International Journal of Solids and Structures, Vol.32, No.22, 1995; p.3341-3357

[15] Lingyun W., Mei Z., Guangming W., Guang M.; Truss optimization on shape and sizing with frequency constraints based on genetic algorithm. Computational Mechechanics, Vol.35, 2005; p.361-368

[16] Li D., Chen S., Huang H.; Improved genetic algorithm with two-level approximation for truss topology optimization. Structural and Multidisciplinary Optimization, Vol.49, 2014; p.795-814

[17] Boithias F., Mankibi M,. Michel P.; Genetic algorithms based optimization of artificial neural network architecture for building’s indoor discomfort and energy consumption prediction. Building Simulation, Vol.5, 2015; p.95-106

[18] Bekiroglu S., Dede T., Ayvaz Y.; Implementation of different encoding types on structural optimization based on adaptive genetic algorithm. Finite Elements in Analysis and Design, Vol.45, 2009; p.826-835

[19] Dede T., Bekiroglu S., Ayvaz Y.; Weight minimization of trusses with genetic algorithm. Applied Soft Computing, Vol.11, 2011; p.2565-2575

[20] Varnamkhasti M.J., Lee L.S.; A fuzzy genetic algorithm based on binary encoding for solving multidimensional knapsack problem. Journal of Applied Mathematics, Article ID 703601, 2012

[21] Srinivas M., Patnaik L.M.; Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transaction on Systems, Man and Cybernetics, Vol.24, No.4, 1994; p.656-667

[22] Togan V., Daloglu A.T.; Optimization of 3D trusses with adaptive approach in genetic algorithms. Engineering Structures, Vol.28, 2006; p.1019-1027

[23] Hu X.B., Wu S.F.; A self-adaptive genetic algorithm based on fuzzy mechanism. IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, 2007; p.4646-4652

[24] Razali N.M., Geraghty J.; Genetic algorithm performance with different selection strategies in solving TSP. Proceedings of the World Congress on Engineering, Vol.2, London, UK, 2011

[25] Sheng H.G., Chen Y.Y., Xia W.K., Gu G., Ting H.X.; Parameters selection of fitness scaling in genetic algorithm and its application. Chinese Control and Decision Conference, Xuzhou, China, 2010; p.2475-2480

[26] Yager, R.R., Filev, D.P.; Essentials of Fuzzy Modeling and Control. John Wiley & Sons, New York, 1994

[27] Tang W., Tong L., Gu Y.; Improwed genetic algorithm for design optimization of truss structures with sizing, shape and topology variables. International Journal for Numerical Methods in Engineering, Vol.62, 2005; p.1737-1762

[28] Wu S-J., Chow P-T.; Integrated discrete and configuration optimization of trusses using genetic algorithms. Computers and Structures, Vol.55, No.4, 1995; p.695-702

[29] Thierauf G., Cai J.; Parallelization of the evolution strategy for discrete structural optimization problems. Computer-Aided Civil and Infrastructure Engineering, Vol.13, 1998; p.23-30

[30] Lee K. S., Geem Z. W., Lee S. H,. Bae K. W.; The harmony search heuristic algorithm for discrete structural optimization. Engineering Optimization, Vol.37, No.7, 2005; p.663-684

[31] Li L. J., Huan, Z. B., Liu, F. A.; A meta heuristic particle swarm optimization method for truss structures with discrete variables. Computer and Structures, Vol.87, 2009; p.435-443

[32] Dede T.; Application of teaching–learning-based optimization algorithm for the discrete optimization of truss structures. KSCE Journal of Civil Engineering, Vol.18, No.6, 2014; p.1759-1767

[33] Wu S. J., Chow P. T.; Steady-state genetic algorithm for discrete optimization of trusses. Computer and Structures, Vol.56, No.6, 1995; p. 979-991

[34] Rukki; Kwadratowe kształtowniki stalowe (Square hollow profiles). http://www.ruukki.pl/Stal/ Ksztaltowniki-zamkniete/Kwadratowe-kszta%C5% 82towniki-zamkniete/Konstrukcyjne-ksztaltownikizamkniete-S355J2H-i-inne-wg-EN-10219-o-przekroju-kwadratowym (in Polish)

EXTRA FILES

COMMENTS