CONTRIBUTION TO THE SHORT MEASUREMENT METHOD FOR DETERMINING THE THERMAL CHARACTERISTICS OF EXISTING BUILDINGS: TOTAL HEAT TRANSMISSION COEFFICIENT ESTIMATION BASED ON DOUBLE MEASUREMENT

Publications

Share / Export Citation / Email / Print / Text size:

Architecture, Civil Engineering, Environment

Silesian University of Technology

Subject: Architecture , Civil Engineering , Engineering, Environmental

GET ALERTS

ISSN: 1899-0142

DESCRIPTION

0
Reader(s)
0
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 10 , ISSUE 1 (March 2017) > List of articles

CONTRIBUTION TO THE SHORT MEASUREMENT METHOD FOR DETERMINING THE THERMAL CHARACTERISTICS OF EXISTING BUILDINGS: TOTAL HEAT TRANSMISSION COEFFICIENT ESTIMATION BASED ON DOUBLE MEASUREMENT

Henryk FOIT / Agata ŚWIERC / Wojciech FOIT

Keywords :  Thermal characteristics of buildings, Residential building, Heating, Ventilation, Heat consumption measurements, Total heat transmission coefficient

Citation Information : Architecture, Civil Engineering, Environment. Volume 10, Issue 1, Pages 103-115, DOI: https://doi.org/10.21307/acee-2017-011

License : (BY-NC-ND 4.0)

Received Date : 23-January-2016 / Accepted: 05-December-2016 / Published Online: 27-August-2018

ARTICLE

ABSTRACT

This article presents the way to determine the total heat transmission coefficient of a building based on double brief measurement and its practical application. It makes use of short measurement of heat consumption in a building and is based on the energy balance. In the proposed procedure the modified external temperature was used instead of the external air temperature. The modified external temperature takes into account the operation of solar radiation and wind on the building and the effect of resistance and heat capacity of the elements of the building envelope. The obtained results were verified by comparing the average monthly heat demand for heating calculated based on the determined total heat transmission coefficient and measured value. The presented way of total heat transmission coefficient determination in the event of a careful choice of measurement days and the experience of the user in estimating the number of air changes (especially in natural ventilated buildings) can be an independent method for determining Hr T based on short measurements. The procedure shown in this publication is also the element of current development of the method performed by the authors which leads towards a larger number of measurement days.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] Kośny J., Kossecka E.;Multi-dimensional heat transfer through complex building envelope assemblies in hourly energy simulation programs, Energy and Buildings 34 (2002), p.445-454

[2] Byrne A., Byrne G., Davies A., Robinson A. J.; Transient and quasi-steady thermal behaviour of a building envelope due to retrofitted cavity wall and ceiling insulation, Energy and Buildings 61 (2013), p.356-365

[3] Laurenti L., Marcotullio F., De Monte F.; Determination of the thermal resistance of walls through a dynamic analysis of in-situ data, International Journal of Thermal Sciences 43 (2004), p.297-306

[4] Oral G. K., Yilmaz Z.; The limit U values for building envelope related to building form in temperate and cold climatic zones, Building and Environment 37 (2002), p.1173-1180

[5] Al-Sanea S. A., Zedan M. F., Al-Hussain S. N.; Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential, Applied Energy 89 (2012), p.430-442

[6] Bellamy L.; Towards the development of new energy performance indicators for the external walls of residential buildings, Energy and Buildings, 68 (2014), p.696-702

[7] Albatici R.; On site evaluation of U-value of opaque building elements: a new methodology, Passive and Low Energy Architecture (PLEA) Conference, Dublin, Ireland 2008

[8] Lee S., Kato S.; Feasibility study of in situ measurement method using the infrared camera to measure uvalue of walls on residential house installed an convection stove, Journal of Environmental Engineering 76 (2011), p.289-295

[9] Roels S.; Reliable building energy performance characterization based on full scale dynamic measurements, International Energy Agency EXCO Energy Conservation in Buildings and Community Systems Annex 58, 2011

[10] Bacher P., Madsen H.; Identifying suitable models for the heat dynamics of buildings, Energy and Buildings 43 (2011), p.1511-1522

[11] Santamouris M.et al.; Energy performance of residential buildings: a practical guide for energy rating and efficiency. James&James/Earthscan. p.140, 2005

[12] Abadie M., Mendes N.; Comparative Analysis of Response-factor and Finite-volume based Methods for predicting Heat and Moisture Transfer through Porous Building Materials, Journal of Building Physics 30 (2006), p.7-37

[13] Sjögren J-U., Andersson S., Olofsson T., Sensitivity of the total heat loss coefficient determined by the energy signature approach to different time periods and gained energy, Energy and Buildings 41 (2009), p.801-808

[14] Oschatz B.; Physikalische Bewertung vorgeschlagener Messverfahren zur energetischen Inspektion von Heizungsanlagen. Des Bundesministerium für Verkehr, Bau und Stadtentwicklung. Dresden, 2006

[15] Donath M.; Analyse des Betriebsverhaltens von Heizungsanlagen bei der Wärmeversorgung von Gebäuden. Dissertation. Universität Rostock, 2012

[16] Foit H., Szewczyk M.; Określanie zapotrzebowania na ciepło końcowe budynku mieszkalnego na podstawie krótkotrwałego pomiaru (Determination of heat demand of residential building based on brief measurement), Rynek Energii 97 (2011), p.86-91 (in Polish)

[17] Foit H. et al.; Poradnik Diagnostyki cieplnej budynków Tom 2 (Handbook of Thermal Diagnostics of Buildings Vol.2). Wydawca Politechnika Śląska. p.346, 2013 (in Polish)

[18] Foit H., Świerc A.; Wyznaczanie wymaganej mocy źródła ciepła na potrzeby diagnostyki cieplnej budynku mieszkalnego. (Measurement based determination of demanded power of heat source for thermal diagniostics of dwelling houses), Rynek Energii 102 (2012), p.76-80 (in Polish)

[19] Świerc A., Foit H.; Evaluation of required heat source power in existing buildings based on short measurements. Pastatu inzinerines sistemos. 16-osios jaunuju mokslininku konferencijos “Mokslas – Lietuvos ateitis” (Engineering systems for Buildings. Proceedings of the 16th Conference for Junior Researchers “Science – Future of Lithuania”). Vilniaus Gedimino Technikos Universitetas. Aplinkos inzinerijos fakultetas. Vilnius: Technika, p.140-145, 2013

[20] Foit H., Świerc A., Szewczyk M.; Miarodajna temperatura zewnętrzna na potrzeby charakterystyki energetycznej budynku (Equivalent external temperature for energy performance of buildings), Rynek Energii 106 (2013), p.108-112 (in Polish)

[21] EN 15378:2007 Heating systems in buildings – Inspection of boilers and heating systems.

[22] Świerc A., Świerc S., Foit H., Koper P., Applying the Exodus method to calculate the set of impulse response functions of a wall, Energy and Buildings 69 (2014), p.301-306

[23] Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast)

[24] Directive 2002/91/EC of the European Parliament of the Council of 16 December 2002 on the energy performance of buildings

[25] Rozporządzenie Ministra Infrastruktury dnia 6 listopada 2008r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej, Dz. U. Nr 201, poz.1240 (Regulation of the Polish Minister of Infrastructure. Methodology for calculating the energy performance of buildings)

[26] EN 12831:2003 Heating systems in buildings – Method for calculation of the design heat load

EXTRA FILES

COMMENTS