ESTIMATION OF THE SEASONAL DEMAND FOR COOLING BASED ON THE SHORT-TERM DATA

Publications

Share / Export Citation / Email / Print / Text size:

Architecture, Civil Engineering, Environment

Silesian University of Technology

Subject: Architecture, Civil Engineering, Engineering, Environmental

GET ALERTS

ISSN: 1899-0142

DESCRIPTION

2
Reader(s)
2
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 10 , ISSUE 2 (June 2017) > List of articles

ESTIMATION OF THE SEASONAL DEMAND FOR COOLING BASED ON THE SHORT-TERM DATA

Dorota BARTOSZ / Aleksandra SPECJAŁ

Keywords : Cooling, Energy demand, Energy performance, Energy signature, Linear regression, Office building

Citation Information : Architecture, Civil Engineering, Environment. Volume 10, Issue 2, Pages 133-143, DOI: https://doi.org/10.21307/acee-2017-027

License : (BY-NC-ND 4.0)

Received Date : 06-April-2017 / Accepted: 08-May-2017 / Published Online: 28-August-2018

ARTICLE

ABSTRACT

The paper analyzes the possibility of using the energy signature method based on the linear regression to determine the seasonal energy demand for cooling and ventilation in the office building. The “extended” energy signature method (H-m method) was described and applied. In accordance with Standard (EN 15603) the estimation of energy consumption for cooling can be performed for a period shorter than the entire season, but data range must be appropriate to obtain the correct accuracy of the results. The presented analysis concerns the uncertainty of estimation the seasonal demand for cooling and ventilation of the building based on monthly and 14-day data. The objective was to choose the shortest possible time period in order to obtain proper accuracy. It has been shown that the H-m method cannot be used to estimate cooling demand based on short-term (monthly or 14-days) data due to unacceptable uncertainty of results.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal of the European Union L.153 (18.06.2010)

[2] Popiolek Z., Kateusz P. (2017). Comprehensive on-site thermal diagnostics of buildings - Polish practical experience. Architecture Civil Engineering Environment 10(2).

[3] Specjał A., Bartosz D. (2016). Determination of the seasonal heat consumption based on the short-term measurements in the building, Journal of Building Physics 1744259116637617, first published on May 23, 2016 as doi:10.1177/1744259116637617.
[CROSSREF]

[4] Popiolek Z. (2013). Kompleksowa diagnostyka cieplna budynków in situ w praktyce. Tom 5 Poradnik diagnostyki cieplnej budynków. (Comprehensive on-site thermal diagnostics of buildings in practice. Vol. 5 of the Guidebook of thermal diagnostics of buildings). Gliwice, Politechnika Śląska. Wydział Inżynierii Środowiska i Energetyki, 447.

[5] Specjał A. (2013). Metodyka wyznaczania świadectwa charakterystyki energetycznej budynku na podstawie pomiarów. Tom 6 Poradnika diagnostyki cieplnej budynków. (Method for drawing up a building energy performance certificate based on the measurements, Vol. 6 of the Guidebook of thermal diagnostics of buildings). Gliwice, Politechnika Śląska. Wydział Inżynierii Środowiska i Energetyki, 105.

[6] EN 15603 2008: Energy performance of buildings – Overall energy use and definition of energy ratings

[7] Kasperkiewicz K. (2008). Metoda obliczania zapotrzebowania na ciepło do ogrzewania budynku mieszkalnego na podstawie monitoringu dostawy ciepła z sieci ciepłowniczej. (Method of calculating the heat demand for heating of the residential building based on monitoring of the heat supplied from the heating network). COW nr 12.

[8] Bartosz D. (2011). Prognozowanie sezonowego zapotrzebowania na ciepło budynku mieszkalnego na podstawie obliczeń krótkoterminowych. (The prediction of seasonal heat demand in residential buildings based on short-term calculations). Rynek Energii, 5, 97–103.

[9] Bartosz D. (2013). Wpływ stanu ochrony cieplnej budynku na dokładność wyznaczania sezonowego zużycia ciepła metodą regresji. (The impact of the energy quality of the building on the seasonal heat demand determination accuracy using the energy signature method). Rynek Energii, 3, 121–129.

[10] Specjał A. (2012). Dokładność wyznaczania charakterystyki energetycznej budynków na podstawie krótkich pomiarów. (Accuracy of determining the energy performance of buildings based on short-term measurements). Rynek Energii, 6, 63–69.

[11] Lam J.C., Hui S.C.M., Chan A.L.S. (1997). Regression analysis of high-rise fully air-conditioned office buildings. Energy and Buildings, 26, 189–197.

[12] Lam J.C., Wan K.K.W., Liu D., Tsang C.L. (2010). Multiple regression models for energy use in air-conditioned office buildings in different climates. Energy Conversion and Management, 51, 2692–2697.

[13] Dong B., Lee S.E., Sapar M.H. (2005). A holistic utility bill analysis method for baselining whole commercial building energy consumption in Singapore. Energy and Buildings, 3, 167–174.

[14] Reference weather files website address: www.mib.gov.pl

[15] EN ISO 13790:2008 Energy performance of buildings – Calculation of energy use for space heating and cooling.

[16] Rozporządzenie Ministra Infrastruktury i Rozwoju z dnia 27 lutego 2015 r. w sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej (Dz. U. z 2015 r., poz. 376). (Regulation of the Minister of Infrastructure and Development of 27 February 2015 on the methodology for calculating the energy performance of a building or part of a building and energy performance certificates) (Journal of Laws, 2015, item. 376).

[17] Blaszczok M., Król M., Hurnik M. (2017). On-site diagnostics of air conditioning systems in office buildings. Architecture Civil Engineering Environment, 10(2).

[18] Hurnik M., Blaszczok M., Król M. (2017). On-site thermal diagnostics of cooling sources for air conditioning systems in office buildings. Architecture Civil Engineering Environment, 10(2).

[19] TRNSYS: A Transient System Simulation Program, Solar Energy Laboratory University of Wisconsin. Version 16, Madison.

EXTRA FILES

COMMENTS