A comparative evaluation of ion release from different commercially-available orthodontic mini-implants – an in-vitro study


Share / Export Citation / Email / Print / Text size:

Australasian Orthodontic Journal

Australian Society of Orthodontists

Subject: Dentistry, Orthodontics & Medicine


ISSN: 2207-7472
eISSN: 2207-7480





Volume / Issue / page

Volume 38 (2022)
Volume 37 (2021)
Volume 36 (2020)
Volume 35 (2019)
Volume 34 (2018)
Volume 33 (2017)
Volume 32 (2016)
Volume 31 (2015)
Related articles

VOLUME 32 , ISSUE 2 (November 2016) > List of articles

A comparative evaluation of ion release from different commercially-available orthodontic mini-implants – an in-vitro study

Venkateswaran Ananthanarayanan * / Sridevi Padmanabhan / Arun B. Chitharanjan

Citation Information : Australasian Orthodontic Journal. Volume 32, Issue 2, Pages 165-174, DOI: https://doi.org/10.21307/aoj-2020-124

License : (CC BY 4.0)

Published Online: 30-July-2021



Background: Titanium alloy mini-implants have become popular in recent times and have been extensively used and studied. Although corrosion resistance of orthodontic materials has always been of concern, this property has been the least explored. The present study aimed to assess the composition, surface characterisation and corrosion resistance of five commercially available mini-implants by assaying ion release in artificial saliva.

Methods: Ten mini-implants each from five companies were obtained: Group 1 – AbsoAnchor (Dentos Inc, South Korea); Group 2 – Microimplant Anchorage System (MIA, Biomaterials Korea); Group 3 – The Orthodontic Mini Anchorage System (TOMAS, Dentaurum, Germany); Group 4 – mini-implants (Denticon, Maharashtra, India); Group 5 – orthodontic mini-implants (J.J.Orthodontics, Kerala, India). One mini-implant from each group was subjected to characterisation and surface microstructure analysis using Energy Dispersive Atomic Spectrometry (EDAX) and Scanning Electron Microscope (SEM), respectively. Ten miniimplants were immersed for 30 days in Fusayama-Meyer artificial saliva solution and the release of titanium, aluminium and vanadium ions was detected with Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES). The Kruskal-Wallis test was used for multi-variate analysis. In order to determine the significant differences between the groups on independent samples, the Mann-Whitney U test (bi-variate analysis) was applied.

Results and conclusion: All groups showed machining defects but surface pitting after immersion was mostly evident in Group 4. Although the composition of all the implants was comparable, there was a statistically significant difference in the Ti, Al and V release between Group 4 – the group with maximum release – and Group 2, the group with least release.

Content not available PDF Share



1. Daskalogiannakis J. Glossary of orthodontic terms. Leipzig: Quintessence Publishing Co., 2000.

2. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod 1997;31:763-7.

3. Hong RK, Heo JM, Ha YK. Lever-arm and mini-implant system for anterior torque control during retraction in lingual orthodontic treatment. Angle Orthod 2005;75:129-41.

4. Herman RJ, Currier GF, Miyake A. Mini-implant anchorage for maxillary canine retraction: a pilot study. Am J Orthod Dentofacial Orthop 2006;130:228-35.

5. Park YC, Lee SY, Kim DH, Jee SH. Intrusion of posterior teeth using mini-screw implants. Am J Orthod Dentofacial Orthop 2003;123:690-4.

6. Baik UB, Chun YS, Jung MH, Sugawara J. Protraction of mandibular second and third molars into missing first molar spaces for a patient with an anterior open bite and anterior spacing. Am J Orthod Dentofacial Orthop 2012;141:783-95.

7. Velo S, Rotunno E, Cozzani M. The implant distal jet. J Clin Orthod 2007;41:88-93.

8. Jeon YJ, Kim YH, Son WS, Hans MG. Correction of a canted occlusal plane with miniscrews in a patient with facial asymmetry. Am J Orthod Dentofacial Orthop 2006;130:244-52.

9. Lin JC, Liou EJ, Yeh CL, Evans CA. A comparative evaluation of current orthodontic miniscrew systems. World J Orthod 2007;8:136-44.

10. Cotrim-Ferreira FA, Quaglio CL, Peralta RP, Carvalho PE, Siqueira DF. Metallographic analysis of the internal microstructure of orthodontic mini-implants. Braz Oral Res 2010;24:438-42.

11. Morais LS, Serra GG, Muller CA, Andrade LR, Palermo EFA, Elias CN et al. Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release. Acta Biomater 2007;3:331-9.

12. Danaei SM, Safavi A, Roeinpeikar SM, Oshagh M, Iranpour S, Omidkhoda M. Ion release from orthodontic brackets in 3 mouthwashes: an in-vitro study. Am J Orthod Dentofacial Orthop 2011;139:730-4.

13. Natarajan M, Padmanabhan S, Chitharanjan AB, Narasimhan M. Evaluation of the genotoxic effects of fixed appliances on oral mucosal cells and the relationship to nickel and chromium concentrations: an in-vivo study. Am J Orthod Dentofacial Orthop 2011;140:383-8.

14. Kerosuo H, Moe G, Kleven E. In vitro release of nickel and chromium from different types of simulated fixed orthodontic appliances. Angle Orthod 1995;65:111-6.

15. de Morais LS, Serra GG, Albuquerque Palermo EF, Andrade LR, Müller CA, Meyers MA et al. Systemic levels of metallic ions released from orthodontic mini-implants. Am J Orthod Dentofacial Orthop 2009;135:522-9.

16. Pithon MM, Santos RL, Martins FO, Medeiros PJ, Romanos MT. Citotoxicity of orthodontic mini-implants. Rev Clín Pesq Odontol. 2010;6:141-6.

17. Malkoç S1, Öztürk F, Çörekçi B, Bozkurt BS, Hakki SS. Real-time cell analysis of the cytoxicity of orthodontic mini-implants on human gingival fibroblasts and mouse osteoblasts. Am J Orthod Dentofacial Orthop 2012;141:419-26.

18. du Preez LA, Bütow KW, Swart TJ. Implant failure due to titanium hypersensitivity/allergy? – Report of a case. SADJ 2007;62:22-5.

19. Sicilia A, Cuesta S, Coma G, Arregui I, Guisasola C, Ruiz E et al. Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. Clin Oral Implants Res 2008;19:823-35.

20. Egusa H, Ko N, Shimazu T, Yatani H. Suspected association of an allergic reaction with titanium dental implants: a clinical report. J Prosthet Dent 2008;100:344-7.

21. Lin W, Stayton I, Huang Y, Zhou X-D, Ma Y. Cytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549. Toxicol Environ Chem 2008;90:983-96.

22. Rogers MA, Simon DG. A preliminary study of dietary aluminium intake and risk of Alzheimer’s disease. Age Ageing 1999;28:205-9.

23. Boyce BF, Byars J, McWilliams S, Mocan MZ, Elder HY, Boyle IT et al. Histological and electron microprobe studies of mineralisation in aluminium-related osteomalacia. J Clin Pathol 1992;45:502-8.

24. Heinemann G, Fichtl B, Vogt W. Pharmacokinetics of vanadium in humans after intravenous administration of a vanadium containing albumin solution. Br J Clin Pharmacol 2003;55:241-5.

25. Rodríguez-Mercado JJ, Roldán-Reyes E, Altamirano-Lozano M. Genotoxic effects of vanadium (IV) in human peripheral blood cells. Toxicol Lett 2003;144:359-69.

26. Rae T. The biological response to titanium and titanium-aluminiumvanadium alloy particles. Part II. Long-term animal studies. Biomaterials 1986;7:37-40.

27. Agency for Toxic Substances and Disease Registry 2012. ToxGuide. <http://www.atsdr.cdc.gov/toxguides/toxguide-58.pdf>

28. Blaya MG, Blaya DS, Mello P, Flores EM, Hirakata LM. Titanium alloy miniscrews for orthodontic anchorage: an in vivo study of metal ion release. Rev Odonto Cienc 2011;26:209-14.

29. Sebbar M, Bourzgui F, Aazzab B, Elquars F. Anchorage miniscrews: a surface characterization study using optical microscopy. Int Orthod 2011;9:325-38.

30. Sebbar M, Bourzgui F, Lazrak L, Aazzab B, El Quars F. [Microscopic comparison of the miniscrew’s surface used in orthodontics: before and after use]. Rev Stomatol Chir Maxillofac 2012;113:365-9. French.

31. Kuphasuk C, Oshida Y, Andres CJ, Hovijitra ST, Barco MT, Brown DT. Electrochemical corrosion of titanium and titanium-based alloys. J Prosthet Dent 2001;85:195-202.

32. Bordji K, Jouzeau JY, Mainard D, Payan E, Netter P, Rie KT et al. Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials 1996;17:929-40.

33. Khan MA, Williams RL, Williams DF. The corrosion behavior of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials 1999;20:631-7.

34. Hanawa T. Metal ion release from metal implants. Material Science and Engineering C 2004;24:745-52.

35. Shi XL, Dalal NS. NADPH-dependent flavoenzymes catalyse one electron reduction of metal ions and molecular oxygen and generate hydroxyl radicals. FEBS 1990;276:189-91.

36. Woodman JL, Jacobs JJ, Galante JO, Urban RM. Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: a long-term study. J Orthop Res 1984;1:421-30.

37. Strietzel R, Hösch A, Kalbfleisch H, Buch D. In vitro corrosion of titanium. Biomaterials 1998;19:1495-9.

38. Knutson KJ, Berzins DW. Corrosion of orthodontic temporary anchorage devices. Eur J Orthod 2013;35:500-6.

39. Holland RI. Corrosion testing by potentiodynamic polarization in various electrolytes. Dent Mater 1992;8:241-5.

40. Guyton, Hall JE. Textbook of medical physiology, 13th Ed. Philadelphia: Elsevier Publishers, 2016; 740, Table 64-1.

41. Zabokova-Bilbilova E, Sotirovska-Ivkovska A, Kanurkova L, Pandilova M. The effect of orthodontic treatment on pH, buffer capacity and levels of Streptococcus mutans and lactobacillus. Somatoloski vjesnik 2012:93-7.

42. Huang TH, Yen CC, Kao CT. Comparison of ion release from new and recycled orthodontic brackets. Am J Orthod Dentofacial Orthop 2001;120:68-75.