reach statistical significance, it suggests that there may be a gender-related difference in immunologic response to drugs or may reflect more frequent exposure to antibiotics among women. (A power analysis indicated that 188 samples would need to be evaluated to determine the statistical significance of this difference.)

Since we have determined that approximately 8 percent of adult patients are expected to develop GAPAs during or after gentamicin therapy, the presence of these antibodies should be considered in patients who either develop thrombocytopenia while receiving gentamicin or within 2 to 3 days of discontinuation of therapy. Particular attention should be given to female patients, as they seem more likely to develop these antibodies than do male patients.

As gentamicin therapy can be critical for the patient, serologic testing for the presence of GAPAs should be performed prior to discontinuation of therapy. SPRCA techniques can be performed in hospital laboratories and results can be obtained within 2 hours. If testing is not available and a patient develops thrombocytopenia while receiving gentamicin, it may be necessary to discontinue the therapy and determine if the platelet count returns to normal. This approach to identification of DDPA is not recommended, as a patient may actually have DDPA to other drugs discontinued at approximately the same time as the suspect medication; this would result in a patient having gentamicin therapy discontinued when the thrombocytopenia was in fact related to another medication. This could compromise both current and future therapy for the patient and could prevent receipt of a medication that would be the best treatment for the patient’s clinical condition.

References

Miriam Fogg Leach, MS, MT(ASCP), SBB, Laboratory Information System Specialist and Special Projects Coordinator, Department of Pathology, Transfusion Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (corresponding author), and James P. AuBuchon, MD, Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH.

BOOK REVIEW


Meeting the transfusion needs of patients with sickle cell disease presents some of the most vexing problems for the transfusion community. Because many of the adverse effects of transfusion occur more commonly in patients with sickle cell disease, both the clinician and the transfusion medicine physician must weigh the benefits of transfusion against a higher level of risk for each of these patients. The technologist must cope with several complicated pretransfusion issues, including serologic problems such as the determination of multiple alloantibodies, distinguishing alloantibodies from autoantibodies, and product selection issues regarding specialized blood products as a potential method for avoiding complications. The blood center is confronted with the difficulty of finding blood of specific phenotypes from a limited supply of blood donated by African American donors.

These issues and the lack of clear-cut solutions to the many problems faced in transfusion support for patients with sickle cell disease have provided the genesis of this
book from the AABB Press. Three experts in adult and pediatric hematology with extensive experience in the clinical management and transfusion support of patients with sickle cell disease have addressed these complicated problems. The authors expressed their hope that in laying out the data and putting it into an appropriate context, we can help physicians and transfusionists take better care of patients with sickle cell disease. They have succeeded in large part in meeting this ambitious goal. This concise, yet informative, book portrays the issues, controversies, and perils of transfusion therapy for the patient with sickle cell disease. As noted by the authors, "In no other clinical setting are the value of erythrocyte transfusion, and the complications arising from it, put in such stark relief."

The book begins with two excellent chapters on the pathophysiology of sickle cell disease and its clinical manifestations. These chapters are well referenced and current. The middle three chapters address transfusion issues, established and proven indications, and controversial indications. The final two chapters deal with immunologic and nonimmunologic transfusion-related complications. Despite three authors contributing to the book, the writing style remains consistent and there is little redundancy that is often found in multiauthored texts. The book is very readable, making some complex issues quite understandable.

The text provides a comprehensive overview of the transfusion support issues for these complicated patients. This book is not targeted for those working in donor recruitment; it does not provide innovative methods or ideas for increasing blood donations in the African American community. Although apheresis technology is mentioned, the goal of this book is not to be an apheresis text, as specific technical details, such as vascular access, pediatric apheresis issues, and other protocol details, are not mentioned in this text. Finally, the recent issues of growing controversy such as bone marrow transplantation as a cure and transfusion support for patients at risk for stroke as identified by new radiologic methods, are not extensively addressed.

Overall, this book will be very useful to its intended readership. It does an excellent job of presenting the difficulties of transfusion support for these patients in a concise and readable format. This book fills a void in the transfusion literature, because there is no other book that specifically addresses the transfusion issues for these patients. With its very reasonable price and excellent presentation by the authors, this book is a true bargain.

Karen E. King, MD
Paul M. Ness, MD
Transfusion Medicine
The Johns Hopkins Hospital
600 North Wolfe Street
Baltimore, Maryland 21287

IN MEMORIUM

Aaron M. Josephson, MD
1924–1999

The field of blood transfusion and hematology lost a valued friend, Aaron Josephson, who died at age 75 in Mobile, Alabama. His career began in 1949 at Michael Reese Hospital and Research Foundation in Chicago. Over a period of 22 years, he went from intern to executive director. While there he focused on the hemoglobinopathies, which he published with Karl and Lilly Singer. Later, he became medical director of Fenwal Laboratories and Hyland Therapeutics.

Dr. Josephson lectured and conducted many seminars promoting technical and clinical safety of transfusion therapy throughout Europe as well as in Israel, Japan, China, Australia, and Africa. He won many friends in those countries with his generous and gentle way of imparting knowledge.

In 1987, his career took him to the American Red Cross in Missouri and finally to Alabama. All who knew him will remember his enthusiasm, attention to detail, and his kind ways.

Dorothy C. Malamut, MT(ASCP)SBB
1939–1999

Ms. Malamut, who died of kidney disease on September 4, 1999, was known to many people around the world as the voice and heart of the American Red Cross Rare Donor Registry. She spent most of her 20 years with the American Red Cross finding rare donor blood for patients in need, and she was almost always successful in meeting that need. She also was guardian of the blood donated by rare donors and made certain that their blood was used appropriately.

She was a primary contributor to the development of the computer program REGG1 of the American Red Cross, which lists blood type information of rare blood