L-SHAPED CANTILEVER PARALLEL - PLATE MEMS ACCELEROMETER DESIGN PARAMETERS USING A GRAVITATIONAL SEARCH ALGORITHM

Souad Oukil
Electrical Engineering
Faculty USTOMB, BP 1505
El M’Naouar Oran, Algeria.
souad.oukil@yahoo.fr

Abdelmadjid Boudjemai
Centre of Satellite Development (CDS), Space Technology Research Division BP.: 4065 Ibn Rochd USTO Oran, Algeria,
a_boudjemai@yahoo.fr

Nabil Boughanmi
Electrical Engineering
Faculty USTOMB, BP 1505
El M’Naouar Oran, Algeria
boughanminabil@yahoo.com

Submitted: Nov. 12, 2014 Accepted: Jan. 7, 2015 Published: Mar. 1, 2015

Abstract- Due to their small size, low weight, low cost and low energy consumption, MEMS (Micro Electro-Mechanical Systems) accelerometers have achieved great commercial success in recent decades. The objective of this paper is to find the optimum design for a typical MEMS accelerometer, which satisfies a set of given constraints. Due to the complex nature of the problem, a gravitational search algorithm (GSA) is developed for optimization. The GSA attempts to optimize the inter-plate gap while satisfying all other engineering goals. The model was constructed in Msc Patran and Nastran software were calculated and model’s response was found. In this paper the optimal design from the theoretically derived gravitational search algorithm is compared to finite element model in order to ascertain its accuracy and verify the results.

Index terms: Power system; MEMS; capacitive accelerometer; optimization; proof-mass; L-shaped beam; GSA; frequency.
I. INTRODUCTION

Manufacturing technology microsystems uses micro-technologies for manufacturing integrated circuits including photolithography steps, deposits, and prints. MEMS are currently used to make ink jet printers, accelerometers, inertial sensors, pressure sensors, micro-mirrors, micro-fluidic pumps (figure 1a). New applications such as RF resonators and laboratories on a chip are being developed. MEMS cover various applications in the field of industrial, medical, automotive, telecommunications; defense [1, 2] (figure 1b).

Parallel plate capacitors are widely used in various applications, such as RF devices [3], variable capacitors [4], accelerometers [5, 6, 7], micro-mirrors, and active vibration isolators [8]. One issue that is inherent to all parallel plate actuators (PPA) is the condition of pull-in. Pull-in is the inability of a PPA to be electrostatically actuated beyond one third of its rest gap distance without becoming unstable. Most PPA devices in widespread use are designed so that they only operate while in an open-loop stable range of motion. These devices must be designed so that they are not actuated beyond this point unless additional circuit is added to prevent pull-in from occurring.
different accelerometers are available in the market such as capacitive [13], piezoresistive [14] and piezoelectric [15].

![Accelerometers](image)

Figure 2. Evolution of MEMS Accelerometers: (a) Analog devises accelerometer (automotive); and (b) STMicroelectronics accelerometer (consumer)

Micromachined accelerometers are extensively used in different areas such as automotive, inertial navigation, guidance, industry, space applications etc (see figure 2). Because of low cost, small size, low power, and high reliability. Among various sensing schemes of accelerometers, capacitive sensing is generally preferred since it provides low temperature dependency, high voltage sensitivity, low noise floor, and low drift. Capacitive accelerometers require special readout electronics to sense the capacitance change and to operate in force-feedback for increased operation range and linearity. With the force-feedback circuit, the overall system becomes complicated because of having both mechanical and electrical components defining the overall performance [16].

In particular the L-shaped cantilever parallel - Plate MEMS are widely used in many area and applications (see figure 3). Many authors have been demonstrating such configuration which gives better sensitivity [17] and suitable for sensing applications. Vincas Benevicius et al. presented in their work an identification of capacitive MEMS accelerometer Structure parameters for human body dynamics measurements, which is used widely in medical applications [18]. D Ozevin et al. consider a device containing an array of MEMS transducers with different resonant
frequencies used for structural health monitoring [19]. MEMS have been proposed for a number of space applications, as lighter and smaller replacement parts or as entire new systems, or as a means to provide affordable redundancy. The L-shaped MEMS sensors are used also in space applications such as sensor placement for structural health monitoring (SHM), damage detection and fault characterization [20, 21, 22, 23, 24, 25].

The paper is organized as follows: Parallel - Plate MEMS Accelerometer model are given in Section 2, The gravitational search algorithm is presented in Section 3, Formulation of the objective function of accelerometer model and its validation, are presented in Section 4. Finite element simulations and Modal Analysis of L-shaped cantilever parallel - Plate MEMS accelerometers is given in Section 5. Concluding remarks are provided in the final Section 6.

II. PARALLEL - PLATE MEMS ACCELEROMETER MODEL

II.1 MEMS Accelerometer Mathematical model

The L-shaped cantilever parallel - Plate MEMS accelerometer models used the simulation are shown in Figures 4 and 5, in which the central masses are suspended by flexures that are anchored on substrates. When the structures are exposed to acceleration a, as shown in Figure 4...
and 5, whose frequency is much less than the natural frequency of the structure, the masses will be displaced by z for the spring force of the flexures to balance the inertial force. In Figure 5, a plate of mass m and area A is suspended by L-shaped flexures to reduce the nonlinear factor. The plate may be perforated to control the damping factor (or quality factor). Figure 6 show the design model.

![Figure 4. Without Perforated plate.](image1.png)

![Figure 5. With perforated plate.](image2.png)

![Figure 6. Design model of MEMS Accelerometer](image3.png)

Mathematical model of the designed L-shaped cantilever parallel-plate MEMS accelerometer is similar to vibration equation in [26]. When acceleration is applied to a mass-spring inertial system in the sensing direction, it can be described as follows:

$$mz''+cz'+kz=F_i$$

where m is the proof mass, c presents the damping coefficient, k is the spring constant of the springs, z is the relative displacement of the proof mass and F_i is the applied force which includes electrostatic force and inertia force.
We can set up the model (a parallel-plate actuator) shown in figure 7a to analyze the behavior of the suspended plate. In the model, a suspended plate of mass \(m \) and area \(A \) is supported by a spring of stiffness \(k \) and damper of damping coefficient \(c \), while a voltage less than a pull-in voltage is applied between the suspended and base plates. If the frequency of the applied acceleration \(a \) is much less than the natural frequency at \(V \), the spring force balances the inertial force due to the acceleration, and the gap between the plates is changed from the initial gap \(h_0 \) to \(h_a \) [27].

![Figure 7. Model of parallel-plate accelerometer](image)

Referring to the free-body diagram of Figure 7b, we obtain the force equilibrium equation:

\[
k(h_0 - h_a) = \frac{1}{2} \frac{\varepsilon A}{h_a} V^2 + ma
\]

(2)

For convenience, equation (2) may be expressed in a dimensionless form which is given by

\[
H_a^3 - (1-I) H_a^2 + G = 0
\]

(3)

Where

\[
H_a = \frac{h_a}{h_0}, \quad G = \frac{1}{2} \frac{\varepsilon A}{k h_0} V^2, \quad I = \frac{ma}{kh_0}
\]

The stable solution of the dimensionless force equilibrium equation, (3) is expressed by

\[
H_a = \frac{I-I}{3} \left(1+2 \cos \left(\frac{I}{3} \cos^{-1} \left[\frac{I-2}{(1-I)} \frac{G}{G_{pi}} \right] \right) \right)
\]

(4)

Where \(G_{pi} = 4/27 \).

Noted from equation (4) that the two independent parameters \(I \) and \(G \) affect the dimensionless gap \(H_a \). In Figure 8 the gap \(H_a \) is plotted against the inertial force \(I \) for the normalized electrostatic force \(G/G_{pi} = 0, 0.1, 0.2, 0.4, 0.6, 0.8 \) and 0.95. For \(G/G_{pi} = 0 \), the dimensionless gap
H_a decreases linearly from unity to zero because there is no electrostatic force acting on the suspended plate. Physically, this means that the mass moves by maximum displacement (i.e., the initial gap h_0) and touches the base electrode of Figure 7a as the maximum acceleration of kh0/m, corresponding to I = 1, is applied. For G/G_{pi} ≠ 0, the nonlinear electrostatic force is exerted on the suspended plate and then the parallel - plate actuator can experience pull - in. When the normalized electrostatic force G/G_{pi} increases from zero to unity, the starting gap is lowered from unity and the pull - in gap varies from zero (i.e., the suspended plate touches the base plate) to 2/3.

As the inertial or electrostatic force increases from zero to its pull - in value, the argument of the inverse cosine in (4) varies from unity to negative unity. Therefore, the suspended plate, exposed to the acceleration a, is in a stable or critical condition if the following condition is satisfied:

\[I - \frac{2}{(1-I)} \frac{G}{G_{pi}} \geq -1 \]

(5)

Since equation (5) includes two independent parameters, I and G, the triangle in Figure 8 defines a stable region in which the suspended plate is stable. It is noted that the lower straight line in the figure can be defined as the pull - in gap, at which the suspended plate experiences pull - in. The pull – in gap H_{pi}, inertial force I_{pi}, and electrostatic force G_{pi} play important roles because they provide a guideline for understanding the nonlinear behavior of a parallel - plate actuator under electrostatic force due to a voltage.

The pull - in voltage V_{pi,a} can be extended beyond the pull - in voltage given by

\[V_{pi} = \sqrt{\frac{8kh_0}{27\varepsilon A}} \]

(6)

which corresponds to the pull - in force G_{pi} at zero acceleration. Thus:

\[V_{pi,a} = \sqrt{2G_{pi} \frac{kh_0^3}{\varepsilon A} (1-I)^3} = V_{pi}(1-I)^{3/2} \]

(7)

Furthermore, it is noted from Figure 9 that the negative dimensionless inertial force increases the gap H_a. In other words, if the L shaped cantilever parallel - plate accelerometer is exposed to a negative acceleration, the voltage and displacement ranges can be extended.
Souad Oukil, Abdelmadjid Boudjemai and Nabil Boughanmi, L-SHAPED CANTILEVER PARALLEL – PLATE MEMS ACCELEROMETER DESIGN PARAMETERS USING A GRAVITATIONAL SEARCH ALGORITHM

Figure 8. Dimensionless gap H_a with respect to the dimensionless inertial force I and the force G/G_{pi}.

<table>
<thead>
<tr>
<th>G/G_{pi}</th>
<th>Pull-in</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 9. Dimensionless gap H_a with respect to the normalized electrostatic force G/G_{pi} and the dimensionless inertial force I.

<table>
<thead>
<tr>
<th>G/G_{pi}</th>
<th>Pull-in</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The figure 10 shows the three-dimensional variation of dimensionless gap H_a regarding to the G/G_{pi} and I parameters.
Figure 10. Dimensionless gap H_a with respect to G/G_{π} and the dimensionless inertial force I.

II.2 Accelerometer model properties

Single crystal silicon material is selected for accelerometer structure. Electrically conductive silicon with resistivity 0.1 Ω-cm is selected for the proof-mass. Similarly Pyrex glass is chosen for top and bottom wafers to reduce stray capacitance and to provide required sealing. The glass wafers are bonded to silicon wafer using anodic bonding process. Electrodes and electrical contact pads are realized by depositing sub-micron thickness Aluminum coating, using E-beam evaporation process. The material properties of silicon and Pyrex glass are shown in table 1.

<table>
<thead>
<tr>
<th>Material Property</th>
<th>Silicon</th>
<th>Pyrex glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_y (yield strength) 10^9 N/m²</td>
<td>7</td>
<td>0.5-0.7</td>
</tr>
<tr>
<td>E (Young’s modulus) 10^{11}N/m²</td>
<td>1.69</td>
<td>400</td>
</tr>
<tr>
<td>v (Poisson’s ratio)</td>
<td>0.28</td>
<td>0.17</td>
</tr>
<tr>
<td>α (thermal expansion coefficient) 10^{-6} mt/mt°C</td>
<td>2.5</td>
<td>0.5</td>
</tr>
<tr>
<td>ρ (density) g/cm³</td>
<td>2.3</td>
<td>2.225</td>
</tr>
</tbody>
</table>

The dimensions and relevant parameters of the accelerometer are given in table 2.
Table 2: MEMS dimensions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof-mass size</td>
<td>CxCxt</td>
<td>463x463x2 μm^3</td>
</tr>
<tr>
<td>Length of beam</td>
<td>L</td>
<td>457μm</td>
</tr>
<tr>
<td>Length of beam</td>
<td>b</td>
<td>90μm</td>
</tr>
<tr>
<td>Beam Width</td>
<td>w_a</td>
<td>2μm</td>
</tr>
<tr>
<td>Beam Width</td>
<td>w_b</td>
<td>4μm</td>
</tr>
<tr>
<td>Gap of the capacitive system</td>
<td>h_0</td>
<td>2μm</td>
</tr>
<tr>
<td>Proof-mass thickness</td>
<td>t</td>
<td>2μm</td>
</tr>
</tbody>
</table>

III. THE GRAVITATIONAL SEARCH ALGORITHM

GSA is a novel heuristic [28] optimization method which has been proposed by E. Rashedi and all in 2009 [29]. The basic physical theory which GSA is inspired from is the Newton’s theory that states: Every particle in the universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them [30].

The algorithm considers agents as objects consisting of different masses proportional to their value of fitness function. During generations, all these objects attract each other by the gravity force, and this force causes a global movement of all objects towards the objects with heavier masses. Hence, masses cooperate using a direct form of communication, through gravitational force. The heavy masses - which correspond to good solutions - move more slowly than lighter ones, this guarantees the exploitation step of the algorithm; the GSA was mathematically modeled in [29-32].

GSA algorithm can be explained following steps

- **Step 1: Initialisation**

When it is assumed that there is a system with N (dimension of the search space) masses, position of the ith mass is described as follows. At first, the positions of masses are fixed randomly

$$X_i = \left(x_{i1}, x_{i2}, ..., x_{in} \right), i=1,..,N$$

(8)
Where, \(x_{id} \) is the position of the \(i \)th mass in \(d \)th dimension.

Step 2: Fitness Evaluation of All Agents

In this step, for all agents, best and worst fitness are computed at each epoch described as follows.

\[
\text{best}(t) = \min_{j \in \{1,...,N\}} \text{fit}_j(t)
\]

\[
\text{worst}(t) = \max_{j \in \{1,...,N\}} \text{fit}_j(t)
\]

Where \(\text{fit}_j(t) \) is the fitness of the \(j \)th agent of \(t \) time, \(\text{best}(t) \) and \(\text{worst}(t) \) are best (minimum) and worst (maximum) fitness of all agents.

Step 3: Compute the Gravitational Constant \((G(t)) \)

In this step, the gravitational constant at \(t \) time \((G(t)) \) is computed as follows.

\[
G(t) = G_0 \exp \left(-a \frac{t}{T} \right)
\]

Where \(G_0 \) is the initial value of the gravitational constant chosen randomly, \(\alpha \) is a constant, \(t \) is the current epoch and \(T \) is the total iteration number.

Step 4: Update the Gravitational and Inertial Masses

In this step, the gravitational and inertial masses are updated as follows.

\[
m_{g_i}(t) = \frac{\text{fit}_i(t) - \text{worst}(t)}{\text{best}(t) - \text{worst}(t)}
\]

Where \(\text{fit}_i(t) \) is the fitness of the \(i \)th agent of \(t \) time.

\[
M_{g_i}(t) = \frac{m_{g_i}(t)}{\sum_{j=1}^{N} m_{g_j}(t)}
\]

Where \(M_{g_i}(t) \) is the mass of the \(i \)th agent of \(t \) time.

Step 5: Calculate the Total Force

In this step, the total force acting on the \(i \)th agent \((F_{id}(t)) \) is calculated as follows.

\[
F_{id}(t) = \sum_{j \in \text{best}, j \neq i} \text{rand}_{j} F_{ij}^d(t)
\]
Where randj is a random number between interval [0, 1] and kbest is the set of first K agents with the best fitness value and biggest mass.

The force acting on the ith mass \(Mi(t) \) from the jth mass \(Mj(t) \) at the specific t time is described according to the gravitational theory as follows.

\[
F_{ij}^d(t) = G(t) \frac{M_j(t)M_i(t)}{R_{ij}(t)} \left[x_i^d(t) - x_j^d(t) \right] + \varepsilon
\]

Where \(R_{ij}(t) \) is the Euclidean distance between ith and jth agents \(\left\| x_i(t), x_j(t) \right\|_2 \) and \(\varepsilon \) is the small constant.

Step 6: Calculate the Acceleration and Velocity

In this step, the acceleration \(a_i^d(t) \) and velocity \(v_i^d(t) \) of the ith agent at t time in dth dimension are calculated through law of gravity and law of motion as follows.

\[
a_i^d(t) = \frac{F_i^d(t)}{Mg_i^d(t)}
\]

\[
v_i^d(t + 1) = rand_i v_i^d(t) + a_i^d(t)
\]

Where randi is the random number between interval [0,1].

Step 7: Update the Position of the Agents

In this step the next position of the ith agents in dth (xid(t+1)) dimension are updated as follows.

\[
x_i^d(t + 1) = x_i^d(t) + v_i^d(t + 1)
\]

The principal of the GSA is shown in Figure 11.
IV. FORMULATION OF THE OBJECTIVE FUNCTION OF ACCELEROMETER MODEL AND ITS VALIDATION

IV.1 Formulation of the objective function

The employment of the GSA algorithm follows a very simple iterative technique to minimize an objective function, given by h_a. The details of this objective function will be explained later. The design variables are represented by h_a.

$$h_a = \{V, K, a, A\}$$

$$h_a = h_0 \left(\frac{m_{a}k_{a}}{3} \left(1 + 2 \cos \left(\frac{1}{3} \cos^{-1} \left[\frac{1 - \frac{2}{(i-1)}}{G_{pi}} \left(\frac{G_{pi}}{2 \frac{A}{k_{a}h_0}} \right)^{1/2} \right] \right) \right) \right)$$

To apply the GSA we, we take random values for the design variables within the following ranges. These ranges were chosen based on the minimum size constraints and maximum area.
constraints, in addition to general observation and intuition about the final design’s optimal geometry.

In the case the Proof-mass without holes

\[
\begin{align*}
A & \in (2 \times 10^{-7}; 3 \times 10^{-7}) \\
V & \in (1; 2) \\
K & \in (1; 6) \\
a & \in (800; 4000)
\end{align*}
\]

In the case the Proof-mass with holes

\[
\begin{align*}
n & \in (1; 25) \\
V & \in (1; 2) \\
K & \in (1; 6) \\
a & \in (800; 4000)
\end{align*}
\]

where

- \(A\): Effective area of movable plate
- \(V\): voltage
- \(K\): spring of stiffness
- \(a\): applied acceleration
- \(n\): number of holes

IV.2. Results and discussion

In this section, the simulation was performed using the GSA, the value of gravitational search algorithm parameters is given in table 3. By applying the Gravitational search algorithm we have obtained the optimal values for \(A\), \(K\), \(a\), \(V\), \(n\), \(h_a\). In this method we have used totally three thousand iterations to obtain the optimal design. The optimization process has maximized the \(h_a\), represented by the objective or fitness function \(h_a\), by satisfying the design criteria. The best performing design was saved for each successive starting population to converge on the optimum values. The results had been displayed for the following iterations and the optimum values obtained by the GSA algorithm have also been described in the tables 4 and 5.

The iterative Gravitational search algorithm process minimizes the \(h_a\), represented by the objective function \(h_a\), while satisfying all other design criteria. The best performing design is saved for each successive starting population to converge on the optimum values. Figures 12, 14, 16, 18, 20 and 22 illustrates this fact by displaying the optimum value of the objective function.
for the first 300 starting populations. Clearly, the GSA algorithm succeeds in progressively finding designs with smaller design areas. Additionally, the GSA algorithm appears to converge to the best design. As shown in the figure (12-23).

After 300 starting populations of 300 generations have been computed, the five best performing designs are output to the user. The final results are shown in Tables 4 and 5. Note that A converges to 2.10-7 m, the minimum value possible. Although 20 μm is never achieved exactly (due to the exclusive nature of the random generator function) it can be assumed that the optimum design has V=2Volts. Conversely, K and a do not appear to converge to a value. This must imply that there is a range of optimum values that can be used to achieve the best design. As a result, the optimum dimensions presented here are only one set of the possible values.

We note from the results obtained using Gravitational search algorithm that the design parameters mainly affect the voltage value as show in the figure 12 to 17.

Figure 12 to 17 shows the response of the suspended mass and design parameters effects, figure 12 and 13 show a stable gap of 2.3389 μm, corresponding to the voltage applied. When the parallel - plate actuator is then exposed to an acceleration of 2069.6 m/s^2 in interval 800<a<3500, which corresponds to the pull - in acceleration at Vmax =1.9977 Volts and a spring of stiffness of 3.8064 N/m with effective area of movable plate A=3.977x10^-7 m².

Figure 15 and 16 show a stable gap of 2.1044 μm, when the acceleration max is 2661.6 m/s^2 in interval 800<a<4000, at Vmax =1.9669 Volts and a spring of stiffness of 3.7995 N/m with effective area of movable plate A=2.9983x10^-7 m².

Figure 16 and 17 gives us the best result which is the result found analytically, it shows a stable gap of 2.0097μm corresponding to the voltage of 1.9513 volts and acceleration of 2215.5 m/s^2, when a spring of stiffness is 4.0301 N/m with effective area of movable plate A=3.977.10^-7 m².

The variation of effective area of movable plate (A) can cause the border effects. These border effects which are the electric field depending on the size of the electrodes, the greater these, the effects are less important and the distance between the electrodes decreases, the influence of edge effects decrease.

Figures 18 to 23 show the effect of number of holes on a stable gap (h_a), when the number of holes increase the value of a stable gap (h_a) decrease for example in figure 18 and 19, when n=3 h_a= 5.7868μm, in figure 20 and 21, n=6 and h_a= 5.5722μm, in figure 22 and 23, when n= 9, h_a=5.1695μm.
To analyze the effects of the number of the holes on the capacitance and pull-in voltage of a parallel plate MEMS Accelerometer, numerical analysis holes effects are given. The perforated plate leads to a reduction in mass per unit length of the structure by >20% as compared to the solid structures. The holes also lead to a change in the area moment of inertia. Therefore, since the natural frequency ω_n of the structure is a function of mass and the geometry (area moment of inertia and length), the presence of perforations directly leads to a change in the natural frequency.

We noticed that the capacitance caused by the number of holes will be decreased and its quotient in the total capacitance will be decreased. If the gap between the plates, h_a, is given, the deviation of the capacitance and the pull-in voltage will be increased as the length and width of the hole increases.

This must be considered when researchers design tunable capacitors; otherwise the pull-in voltage in fact will exceed the designed pull-in voltage, which will result in the failure or breakage of the fabricated of a parallel plate MEMS Accelerometer.

Table 3: Parameters setting for GSA.

<table>
<thead>
<tr>
<th>GSA parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension of problem</td>
<td>05</td>
</tr>
<tr>
<td>Number of agents</td>
<td>150</td>
</tr>
<tr>
<td>Max-iteration.</td>
<td>300</td>
</tr>
<tr>
<td>Velocity</td>
<td>clock</td>
</tr>
<tr>
<td>Acceleration.</td>
<td>gateway node flag</td>
</tr>
<tr>
<td>Mass. $M_a=M_p=M_i=M$</td>
<td>time master node flag</td>
</tr>
<tr>
<td>Position of agents.</td>
<td>for internal clock synchronization</td>
</tr>
<tr>
<td>Distance between agents in search space.</td>
<td>for external clock synchronization</td>
</tr>
</tbody>
</table>
Table 4: Parameters design effects.

<table>
<thead>
<tr>
<th>Optimal design parameters with Variable design parameters</th>
<th>Best value</th>
<th>Corresponding figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{max} (m²)</td>
<td>V_{max} (Volts)</td>
<td>k_{max} (N/m)</td>
</tr>
<tr>
<td>$2.10^{7}<A<4.10^{7}$</td>
<td>$(1<V<2)$</td>
<td>$(1<K<4)$</td>
</tr>
<tr>
<td>$3.977.10^{7}$</td>
<td>1.9977</td>
<td>3.8064</td>
</tr>
<tr>
<td>$2.10^{7}<A<3.10^{7}$</td>
<td>$(1<V<2)$</td>
<td>$(1<K<4)$</td>
</tr>
<tr>
<td>$2.998.10^{7}$</td>
<td>1.9669</td>
<td>3.7995</td>
</tr>
<tr>
<td>$2.10^{7}<A<2.4.10^{7}$</td>
<td>$(1<V<2)$</td>
<td>$(1<K<4.05)$</td>
</tr>
<tr>
<td>$2.358.10^{7}$</td>
<td>1.9513</td>
<td>4.0301</td>
</tr>
</tbody>
</table>

Figure 12. Interplate gap vs. iteration

Figure 13. Design parameters vs. Iteration.
Figure 14. Interplate gap vs. iteration

Figure 15. Design parameters vs. Iteration.

Figure 16. Interplate gap vs. iteration
Table 5: The holes effects.

<table>
<thead>
<tr>
<th>Optimal design parameters with Variable design parameters</th>
<th>Best value</th>
<th>Corresponding figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_{\text{max}})</td>
<td>(V_{\text{max}}) (Volts)</td>
<td>(k_{\text{max}}) (N/m)</td>
</tr>
<tr>
<td>(1(<n)<5)</td>
<td>(1(<V)<2)</td>
<td>(1(<K)<4.05)</td>
</tr>
<tr>
<td>3</td>
<td>1.9979</td>
<td>3.9541</td>
</tr>
<tr>
<td>(1(<n)<10)</td>
<td>(1(<V)<2)</td>
<td>(1(<K)<4.05)</td>
</tr>
<tr>
<td>6</td>
<td>1.9981</td>
<td>3.9978</td>
</tr>
<tr>
<td>(1(<n)<20)</td>
<td>(1(<V)<2)</td>
<td>(1(<K)<4.05)</td>
</tr>
<tr>
<td>9</td>
<td>1.9905</td>
<td>3.9609</td>
</tr>
</tbody>
</table>
Figure 19. Design parameters vs. Iteration.

Figure 20. Interplate gap vs. iteration

Figure 21. Design parameters vs. Iteration.
V. FINITE ELEMENT SIMULATIONS AND MODAL ANALYSIS OF L-SHAPED CANTILEVER PARALLEL - PLATE MEMS ACCELEROMETERS

A modal analysis was conducted to calculate the fundamental frequencies and modal shapes of the accelerometer. The boundary condition in the FEM simulation concerns the one edge of the short side which is constrained (displacement of x, y and z are zero, and rotation of x, y and z are zero) in the cantilevered L shaped MEMS. The finite element model (FEM) of a MEMS accelerometer is given by figure 24.

Figure 25 shows the frequencies modes of MEMS accelerometer obtained using Msc. Patran/Nastran software. The results gives the structure modal forms, and which makes it possible to see where are made the most deformations and which elements.

The colored fringes give the amplitude of the displacement vector describing the shape of each mode. The black color corresponds to null displacement and the red one presents the maximum amplitude.
Figure 25 shows the displacement of the MEMS accelerometer in Z direction, the maximum is about 2.003µm. The lowest frequency was in 1st mode (1061.6Hz), which gives the better the vibration direction. The frequency was increasing with each subsequent mode of vibration.

The translation in-plane modes, have a frequency around 6655.4Hz. The resulting modes from FEM simulations are the lowest frequency modes in the design and turns out to be at 1061.6Hz. The two following modes occur around 2111Hz and correspond to Out-of plane rotation. The rotation results in a tension (or compression) common to the four L-shaped beam. For small-displacements, the out-of-plane translation does not introduce any axial force in the L-shaped beam. The other modes are at frequencies high enough to guarantee low sensitivity.
Mode 5, $f_5=6655.9\text{Hz}$, In-plane translation in x-direction

Mode 6, $f_6=15382\text{Hz}$, In-plane rotation

Mode 7, $f_7=39529\text{Hz}$

Mode 8, $f_8=49429\text{Hz}$, mechanical mode of the spring.

Mode 9, $f_9=50286\text{Hz}$, mechanical mode of the spring.

Mode 10, $f_{10}=50287\text{Hz}$, mechanical mode of the spring.

Figure 25. Various shape modes of the cantilevered L shaped MEMS.

VI. CONCLUSIONS

In this paper, we have proposed a system to perform the optimization of the design parameters in the L-shaped MEMS accelerometer. For this, we have employed a Gravitational Search optimization algorithm which provides an efficient optimization technique. The result shows that this method has delivered better results in terms of the fitness values. The simulation results also show that the intensity of the springs which is the weakest part in the accelerometer meets the
material intensity under the applied external accelerations in all directions. A modal analysis was used to extract the fundamental frequencies and modal shapes of the design as a reference for the range of operation of the device. The lowest natural frequency of the device is about 1061.6 Hz.

REFERENCES

