On the Preparation of Nickel Nanoparticles by Chemical Reduction Method: X-ray Absorption Spectroscopy

Liang-Hsing CHOU 1, Wen-Ching HUNG 2, Maw-Tien LEE 2*

1 Department of Civil and Water Resource Engineering, National Chiayi University, Chiayi, Taiwan
2 Department of Applied Chemistry, National Chiayi University, Chiayi, Taiwan
crossref http://dx.doi.org/10.5755/j01.ms.22.2.12921

Received 20 August 2015; accepted 09 April 2016

Nickel nanoparticles were synthesized by the chemical reduction of NiCl2 with NH3 under controlled pH environment. During nucleation, polyvinyl pyrrolidone (PVP) was added as the protective agents for preventing the agglomeration of metal clusters. Color of the solution changed from green to blue during the reaction period. X-Ray Adsorption Spectroscopy (XAS), X-Ray Diffraction (XRD), and Transmission Electron Microscopy (TEM) analytical methods were used to characterize the product. XAS analysis showed that the reduction reaction occurred within 5 minutes after the addition of NH3. The length of Ni-Ni bond was 2.59 nm. The results of XRD analysis of the three cases with pH ranging from 11.0 to 13.0 suggest that the optimum pH value for the reaction appeared to be 12.0. The average particle size was 20 – 50 nm under this condition.

Keywords: chemical reduction, nanoparticle, XAS.

1. INTRODUCTION

Nanoparticles possess physical and chemical properties different from those of bulk materials due to their extremely small size and large specific surface area. They are expected to have many potential applications in optoelectronics, semiconductors, capacitors, catalysis, photocatalysis, environmental remediation, and so on. Nickel nanoparticles with their magnetic properties are one of the most important nanomaterials.

Many methods have been proposed to synthesize the nickel nanoparticles. Park et al [1] prepared the Ni powders directly from Ni(NO3)2·6H2O aqueous solution containing EDTA by chemical reduction. Massicot et al [2] used Ni(OAc)2 and Al(AsC6H5)3 to get subnmonic Ni-Al clusters. Alymov and Leontieva [3] synthesized Ni and Fe powders by the hydrogen method. Monodisperse Ni nanoparticles were prepared by Hegde et al [4] by the polyol process using PVP as the protective agent. The rapid expansion of supercritical fluid solutions, coupled with chemical reduction was used by Sun et al [5] for preparing Ni, Co, and Fe nanoparticles. Li et al [6] prepared nickel ultrafine powder by chemical control reduction of NiSO4 with hydrazine. Their experimental results showed that pH and temperature are the main factors to influence the reaction. Zheng et al [7] prepared PVP-protected nanoscale Ni powder in ethanol-water system. Gao et al [8] used hydrazine hydrate as reducing agent to reduce Ni(NO3)2·6H2O. Wu and Chen [9] prepared Ni nanoparticles by hydrazine reduction in ethylene glycol without soluble polymer as a protective agent. Kim et al [10] discussed the effect of the kind of alcohol and volume ratio of alcohol on the reduction of nickel salt by hydrazine in aqueous solution. To enhance the reaction of chemical reduction of NiCl2 in ethanol-

water solution, Kim et al [11, 12] used microwave-assisted hydrothermal method in preparing submicron nickel powders. Considering the economical aspects of the process, the chemical reduction of metal cations from the solutions of metal salt is an attractive method. Most of the previous studies concerning the preparation of nickel nanoparticles by chemical reduction were focused on the effects of nickel concentration, surfactant, solvent composition, etc. In this work, we tried to investigate the interactions between metals/metal ions during the formation of nickel nanoparticles via in-situ observation with X-Ray Absorption Spectroscopy (XAS). The final products were also characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM).

2. EXPERIMENTAL DETAILS

For this experimental investigation, the precursor solution was first prepared by adding appropriate NiCl2 (Wako Co. Japan), di-ammonium citrate (chelating agent, Showa Co. Japan) and sodium hydroxide (Showa Co. Japan) to the reactor (Fig. 1). The pH of the solution was kept at about 12.5. Polyvinyl pyrrolidone (PVP, Showa Co. Japan) and silver nitrate (AgNO3 Showa Co. Japan) were added to the precursor solution as the protecting agent and the nucleating agent to enhance the reaction rate, respectively. The solution prepared above was heated to 90 °C under a mixing rate of 250 rpm, before the reducing agent (NH3.H2O, Merck Germany) was added to the solution. The colors of the solution in every reaction step were observed and recorded.

A first sample was taken as soon as the reducing agent was added. Two other samples were taken at 5 and 45 minutes thereafter. All the samples were cooled, centrifuged and washed with de-ionized water and alcohol, and stocked in alcohol solution.

Analytical methods of TEM, XRD and XAS were used to characterize the properties of the samples,
respectively, using instruments of Hitachi HF-2000, Rigaku d/Max-II, and X-ray at National Synchrotron Radiation Research Center (NSRRC), Taiwan. In this study, XAS is used in analyzing the experimental results. The XAS methods used in this study were X-Ray Absorption Near Edge Structure (XANES) and Extend X-Ray Absorption Fine Structure (EXANES). XANES depicts the distribution of electrons around an atom and gives the oxidation number of the atom. EXANES is used to obtain the coordination number, bond length etc. around an atom. They are widely used in the research of catalysts and materials [13, 14].

Fig. 1. Experimental apparatus

3. RESULTS AND DISCUSSION

When NiCl₂ was dissolved in water, green color appeared (Fig. 2 a). It is the color of Ni(H₂O)₆²⁺ [7]. With the addition of NaOH and di-ammonium citrate, the color turned to be dark green (Fig. 2 b). Reduction reaction occurred as soon as the addition of N₂H₄ and black Ni particles precipitated (Fig. 2 c). The color of NiCl₂ solution in various stages are depicted as Fig. 2.

Fig. 2. Color of NiCl₂ solution in various stages (in colour online)

Three samples taken immediately, 5 and 45 minutes after the addition of the reducing agent were analyzed with the XAS, TEM and XRD methods. Fig. 3 is an XANES spectrum. It shows that the photo energies are 8346.59 eV, 8343.8 eV and 8346.99 eV at pH = 11, 12, and 13, individually. At pH = 12, the system has the lowest photo energy. It means that at pH = 12, nickel has lower oxidation number than that of the other two conditions and there are less Ni(OH)₂. Less Ni(OH)₂ is helpful for reducing nickel ions to nickel nanoparticles.

Fig. 4 shows the magnitude an imaginary of EXAFS functions. To obtain this result, a program for data analysis and Fourier Transform is used, and k is the structure parameter used in this program.

As demonstrated in Fig. 4, as soon as the addition of N₂H₄ to the pH controlled aqueous solution containing di-ammonium citrate, NiCl₂ and PVP, the appearance of NiCl₂ aggregates was considered as the evidence of formation of Ni-Ni bond at about 3.0 Å as discussed by Gaidelene et al. [13, 14].

Fig. 3. The XANES spectrum. photon energy at various pH conditions: 1–pH = 11 photon energy = 8346.59 eV; 2–pH = 12 photon energy = 8343.8 eV; 3–pH = 13 photon energy = 8346.99 eV

Fig. 4. Magnitude and imaginary (3.5 < k Å⁻¹ < 12Å⁻¹) of EXAFS functions characterizing structure of NiCl₂ before (solid line) and after (dashed line) the addition of N₂H₄

Fig. 5 and Fig. 6 show that after 5 minutes into the reaction, NiCl₂ was reduced to Ni cluster with the Ni-Ni bond distance of about 2.50 Å.
4. CONCLUSIONS

The information about valence and local structure of metals/metal ions was obtained at different pH values of the reaction system. As concluded below, interaction between metals/metal ions and protective polymers could be fully characterized and the role of pH in affecting the structure of Ni nano-particles was better understood:
1. The formation of NiO₃ not only affects the morphology of Ni cluster, but also influences the oxidation state leading to a change of the character of Ni nano-particles.
2. pH of the solution and the chelating agent are very important in the competition reactions between the reduction of NiCl₂ and the formation of NiO₂.
3. XAS is a powerful tool to identify the interaction between the metal ion and the approaching agent. By incorporating XAS, TEM, and XRD, the relationship between the structure of Ni nano-particles and operating condition can be explored.

Acknowledgements

We sincerely appreciate the assistance of NSRRC to accomplish our studies.

REFERENCES


