SAMPLE ALLOCATION IN ESTIMATION OF PROPORTION IN A FINITE POPULATION DIVIDED AMONG TWO STRATA

Dominik Sieradzki¹, Wojciech Zieliński²

ABSTRACT

The problem of estimating a proportion of objects with a particular attribute in a finite population is considered. The classical estimator is compared with the estimator, which uses the information that the population is divided among two strata. Theoretical results are illustrated with a numerical example.

Key words: survey sampling, sample allocation, stratification, estimation, proportion.

1. Introduction

Consider a population \(U = \{u_1, u_2, \ldots, u_N\} \) which contains a finite number of \(N \) units. In this population we can observe objects which have a given characteristic (property), for example sex, defectiveness, support for a particular candidate in elections, etc. Let \(M \) denote an unknown number of units in the population with a given property. We would like to estimate \(M \), or equivalently, a proportion (fraction) \(\theta = \frac{M}{N} \). A sample of size \(n \) is drawn using simple random sampling without replacement scheme. In the sample the number of objects with a particular attribute is observed. This number is a random variable. To be formal, let \(\xi \) be a random variable describing number of units having a certain attribute in the sample. The random variable \(\xi \) has hypergeometric distribution (Zieliński 2010) and its statistical model is

\[
\left(\{0, 1, \ldots, n\}, \{H(N, \theta N, n), \theta \in (0, 1)\} \right),
\]

with probability distribution function

\[
P_{\theta, N, n} \{ \xi = x \} = \binom{\theta N}{x} \binom{(1-\theta)N}{n-x} \binom{N}{n},
\]

¹Department of Econometrics and Statistics, Warsaw University of Life Sciences.
E-mail: dominik_sieradzki@sggw.pl

²Department of Econometrics and Statistics, Warsaw University of Life Sciences.
E-mail: wojciech_zielinski@sggw.pl
for integer x from interval $\langle \max\{0, n-(1-\theta)N\}, \min\{n, \theta N\} \rangle$. Unbiased estimator with minimal variance of the parameter θ is $\hat{\theta}_c = \frac{\xi}{n}$ (Bracha 1998). Variance of that estimator equals

$$D^2_{\theta} \hat{\theta}_c = \frac{1}{n^2} D^2_{\theta} \xi = \frac{\theta(1-\theta)N-n}{N-1} \frac{n}{N-n} \text{ for all } \theta.$$

(3)

It is easy to calculate that variance $D^2_{\theta} \hat{\theta}_c$ takes on its maximal value at $\theta = \frac{1}{2}$.

2. Stratified estimator

Let contribution of the first strata be w_1, i.e. $w_1 = N_1/N$. Hence, the overall proportion θ equals

$$\theta = w_1 \theta_1 + w_2 \theta_2,$$

(4)

where $w_2 = 1-w_1$. It seems intuitively obvious to take as our estimate of θ,

$$\hat{\theta}_w = w_1 \frac{\xi_1}{n_1} + w_2 \frac{\xi_2}{n_2},$$

(5)

where n_1 and n_2 denote sample sizes from the first and the second strata, respectively. Now, we have two random variables describing the number of units with a particular attribute in samples drawn from each strata:

$$\xi_1 \sim H(N_1, \theta_1 N_1, n_1), \quad \xi_2 \sim H(N_2, \theta_2 N_2, n_2).$$

(6)

The whole sample size equals $n = n_1 + n_2$. The question now arises: how shall we choose n_1 and n_2 to obtain the best estimate of θ? This problem concerns sample allocation between strata. One of known approaches to this problem is proportional allocation (Armitage 1943, Cochran 1977). Sample sizes n_1 and n_2 are proportional to w_1 and w_2,

$$n_1 = w_1 n \quad \text{ and } \quad n_2 = w_2 n.$$

(7)

The second approach to sample allocation is Neyman Allocation (Neyman 1934). This method gives values of n_1 and n_2, which minimize the variance of estimator $\hat{\theta}_w$ for given θ_1 and θ_2. The values of n_1 and n_2 are as follows

$$n_i = \frac{w_i \sqrt{\theta_i(1-\theta_i)}}{\sum_i w_i \sqrt{\theta_i(1-\theta_i)}} n, \quad i = 1, 2.$$

(8)

Neyman Allocation requires knowledge of the parameters θ_1 and θ_2. Those magnitudes would be known exactly when the population were subjected to exhaustive
sampling. Usually values θ_1 and θ_2 are estimated from a preliminary sample. In some cases fairly good estimates of θ_1 and θ_2 are available from past experience (Armitage 1943).

Since our aim is to estimate θ, hence the parameter θ_1 will be considered as a nuisance one. This parameter will be eliminated by appropriate averaging. Note that for a given $\theta \in [0, 1]$, parameter θ_1 is a fraction M_1/N_1 (it is treated as the number, not as the random variable) from the set

$$\mathcal{A} = \left\{ a_\theta, a_\theta + \frac{1}{N_1}, a_\theta + \frac{2}{N_1}, \ldots, b_\theta \right\},$$

where

$$a_\theta = \max \left\{ 0, \frac{\theta - w_2}{w_1} \right\} \quad \text{and} \quad b_\theta = \min \left\{ 1, \frac{\theta}{w_1} \right\}$$

and let L_θ be cardinality of \mathcal{A}.

Theorem. Estimator $\hat{\theta}_w$ is an unbiased estimator of θ.

Proof. Note that for a given θ there are L_θ values of θ_1 and θ_2 giving θ. Hence, averaging with respect to θ_1 is made assuming the uniform distribution of θ_1 on the set $\{a_\theta, \ldots, b_\theta\}$. We have

$$E_\theta \hat{\theta}_w = E_\theta \left(\frac{w_1}{n_1} \xi_1 + w_2 \xi_2 \right) = \frac{1}{L_\theta} \sum_{\theta_1 \in \mathcal{A}} \left(\frac{w_1}{n_1} E_{\theta_1} \xi_1 + \frac{w_2}{n_2} E_{\theta - w_1 \theta_1} \xi_2 \right)$$

$$= \frac{1}{L_\theta} \sum_{\theta_1 \in \mathcal{A}} \left(\frac{w_1}{n_1} \theta_1 N_1 n_1 + \frac{w_2}{n_2} \frac{\theta - w_1 \theta_1}{w_2} N_2 n_2 \right)$$

$$= \theta$$

for all θ.

Averaged variance of estimator $\hat{\theta}_w$ equals:

$$D_\theta^2 \hat{\theta}_w = D_\theta^2 \left(\frac{w_1}{n_1} \xi_1 + w_2 \xi_2 \right) =$$

$$= \frac{1}{L_\theta} \sum_{\theta_1 \in \mathcal{A}} \left(\frac{w_1}{n_1} D_{\theta_1}^2 \xi_1 + \frac{w_2}{n_2} D_{\theta - w_1 \theta_1}^2 \xi_2 \right) =$$

$$= \frac{1}{L_\theta} \sum_{\theta_1 \in \mathcal{A}} \left[\frac{w_1^2}{n_1} \hat{\theta}_1 (1 - \hat{\theta}_1) \frac{N_1 - n_1}{N_1 - 1} + \frac{w_2^2}{n_2} \frac{\theta - w_1 \theta_1}{w_2} \frac{1 - \theta - w_1 \theta_1}{w_2} \frac{N_2 - n_2}{N_2 - 1} \right].$$

Let $f = \frac{n_1}{n_1}$ denote the contribution of the first strata in the sample. For $0 < \theta < w_1$
variance of $\hat{\theta}_w$ equals $a_\theta = 0$ and $b_\theta = \frac{\theta}{w_1}$:

\[
\begin{align*}
\text{h}(f) & = \frac{6(N_1 - 1)(N_2 - 1)Nf(1 - f)n}{(N_2 - 1)N_1 - (N(n + 1) - 2(N_1 + n))f + (N - 2)n f^2} \cdot \theta^2, \\
\text{variance of } \hat{\theta}_w & = \left(a_\theta = 0 \text{ and } b_\theta = \frac{\theta}{w_1} \right) : \\
& = \frac{h(f)}{-6(N_1 - 1)(N_2 - 1)Nf(1 - f)n} \cdot \theta \\
& \quad + \frac{(N_2 - 1)N_1 - (N(n + 1) - 2(N_1 + n))f + (N - 2)n f^2}{3(N_1 - 1)(N_2 - 1)f(1 - f)n} \cdot \theta^2,
\end{align*}
\]

where

\[
\begin{align*}
h(f) &= N_1(N_2 - 3N_1(N_2 - 1) - 1) \\
& \quad + \left(3N_1^2(N_2 - 1) + 3N_2^2 + 2n + N_1 \left(6N_2n - 3N_2^2 - 4n + 1 \right) - N_2(4n + 1) \right) f \\
& \quad + 2(N_1(2 - 3N_2) + 2N_2 - 1)n f^2
\end{align*}
\]

For $w_1 \leq \theta \leq 1 - w_1$ variance of $\hat{\theta}_w$ equals $a_\theta = 0$ and $b_\theta = 1$:

\[
\begin{align*}
\text{variance of } \hat{\theta}_w & = \left(a_\theta = 0 \text{ and } b_\theta = 1 \right) : \\
& = \frac{(N_2 - (1 - f)n)}{(N_2 - 1)(1 - f)n} \cdot \theta(1 - \theta) \\
& \quad - \frac{N_1 \left(2(N + 1)f^2 + (3NN_2 + N_2 - N_1 - 2n(N + 1))f - N_1(N_2 - 1) \right)}{6N^2(N_2 - 1)n f(1 - f)} \cdot \theta^2.
\end{align*}
\]

To obtain explicit formula for variance of $\hat{\theta}_w$ for $1 - w_1 < \theta < 1$ it is sufficient to replace θ by $1 - \theta$ in (13). Observe that variance $D^2_\theta \hat{\theta}_w$ depends on size n of the sample, size N of the population, contribution w_1 of the first strata in population and contribution f of the first strata in the sample. In Figure 1 variances of $\hat{\theta}_w$ and $\hat{\theta}_c$ are drawn against θ, for $N = 100000$, $n = 100$, $w_1 = 0.4$ and $f = 0.3$.

Figure 1. Variances of $\hat{\theta}_c$ and $\hat{\theta}_w$ for $w_1 = 0.4$ and $f = 0.3$

Source: Own calculations.
It is easy to note that $D^2_\theta \hat{\theta}_w = D^2_{1-\theta} \hat{\theta}_w$ and $D^2_0 \hat{\theta}_w = 0$.

Maximum of variance $D^2_\theta \hat{\theta}_w$ determines for which value of unknown parameter θ estimation of θ is the worst one. After the analysis of variance of $\hat{\theta}_w$, it is seen that the maximal variance may be in the one of the intervals: $(0, w_1)$, $(w_1, 1 - w_1)$ or $(1 - w_1, 1)$. It depends on the values of w_1 and f. In Figures 2, 3, 4 and 5 variance of $\hat{\theta}_w$ as well as variance of $\hat{\theta}_c$ is drawn for $N = 100000$, $n = 100$, $w_1 = 0.4$ and $f = 0.2, 0.4, 0.6, 0.9$.

![Graphs showing variance for different values of f.](image)

The point at which $D^2_\theta \hat{\theta}_w$ takes on the maximal value may be located in interval $(0, w_1)$ or in interval $(w_1, 1 - w_1)$. Hence, to find the global maximum due to θ, we have to find local maximum in both intervals. Denote by θ^* a local maximum point in interval $(0, w_1)$ (local maximum point in interval $(1 - w_1, 1)$ is $1 - \theta^*$). In an interval $(w_1, 1 - w_1)$ local maximum is achieved at $\theta = 1/2$. Let $\tilde{\theta}$ denote a global
maximum point, i. e. \(\tilde{\theta} = 1/2 \) or \(\tilde{\theta} = \theta^* \), hence

\[
\max_{\theta \in (0,1)} D^2_\theta \hat{\theta}_w = \max \{ D^2_{0.5} \hat{\theta}_w, D^2_\theta \hat{\theta}_w \}. \tag{16}
\]

Regardless of which point is the global maximum point (1/2 or \(\theta^* \)), the maximum of the variance \(D^2_\theta \hat{\theta}_w \) depends on size \(n \) of the sample, size \(N \) of the population, contribution \(w_1 \) of the first strata in the population and the contribution \(f \) of the first strata in the sample. Values \(N, n, w_1 \) are treated as given. It may be seen that for given \(w_1 \), variance \(D^2_\theta \hat{\theta}_w \) may be smaller as well as greater than \(D^2_\theta \hat{\theta}_c \). We would like to find optimal \(f \), which minimizes maximal variance \(D^2_\theta \hat{\theta}_w \).

3. Results

A general formula for the optimal \(f \) is unobtainable, because of complexity of symbolic computation. But for given \(N, w_1 \) and \(n \) numerical solution is easy to obtain. Table 1 shows some numerical results for \(N = 100000 \) and \(n = 100 \).

<table>
<thead>
<tr>
<th>(w_1)</th>
<th>(f^{opt})</th>
<th>(n^{opt}_1)</th>
<th>(D^2_\theta \hat{\theta}_w)</th>
<th>(D^2_{0.5} \hat{\theta}_c)</th>
<th>(\left(1 - \frac{D^2_\theta \hat{\theta}w}{D^2{0.5} \hat{\theta}_c} \right) \cdot 100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.018</td>
<td>2</td>
<td>0.0004645</td>
<td>0.0025</td>
<td>81%</td>
</tr>
<tr>
<td>0.10</td>
<td>0.041</td>
<td>4</td>
<td>0.0008404</td>
<td>0.0025</td>
<td>66%</td>
</tr>
<tr>
<td>0.15</td>
<td>0.071</td>
<td>7</td>
<td>0.0011328</td>
<td>0.0025</td>
<td>55%</td>
</tr>
<tr>
<td>0.20</td>
<td>0.111</td>
<td>11</td>
<td>0.0013493</td>
<td>0.0025</td>
<td>46%</td>
</tr>
<tr>
<td>0.25</td>
<td>0.166</td>
<td>17</td>
<td>0.0015004</td>
<td>0.0025</td>
<td>40%</td>
</tr>
<tr>
<td>0.30</td>
<td>0.250</td>
<td>25</td>
<td>0.0015984</td>
<td>0.0025</td>
<td>36%</td>
</tr>
<tr>
<td>0.35</td>
<td>0.350</td>
<td>35</td>
<td>0.0017045</td>
<td>0.0025</td>
<td>32%</td>
</tr>
<tr>
<td>0.40</td>
<td>0.400</td>
<td>40</td>
<td>0.0017982</td>
<td>0.0025</td>
<td>28%</td>
</tr>
<tr>
<td>0.45</td>
<td>0.450</td>
<td>45</td>
<td>0.0018544</td>
<td>0.0025</td>
<td>26%</td>
</tr>
<tr>
<td>0.50</td>
<td>0.500</td>
<td>50</td>
<td>0.0018731</td>
<td>0.0025</td>
<td>25%</td>
</tr>
</tbody>
</table>

Source: Own calculations.

In the first column of Table 1. the values of \(w_1 \) are given. In the second column, optimal contribution of the first strata in the sample is shown. It is a value \(f \), which gives minimum of \(D^2_\theta \hat{\theta}_w \). Column \(n^{opt}_1 \) shows optimal sample size from the first strata (called averaged sample allocation). The values of minimal (maximal) variances \(D^2_\theta \hat{\theta}_w \) are given in the fourth column. The next column contains maximal variance \(D^2_{0.5} \hat{\theta}_c \). The last column shows how much estimator \(\hat{\theta}_w \) is better than \(\hat{\theta}_c \).
4. Summary

In the paper a new approach to the sample allocation between strata was proposed. Two estimators of an unknown fraction θ in the finite population were considered: standard estimator $\hat{\theta}_c$ and stratified estimator $\hat{\theta}_w$. It was shown that both estimators are unbiased. Their variances were compared. It appears that for a given sample size there exists its optimal allocation between strata, i.e. the allocation for which variance of $\hat{\theta}_w$ is smaller than variance of $\hat{\theta}_c$. Since a theoretical comparison seems to be impossible, hence a numerical example was presented. In that example it was shown that variance of the stratified estimator may be smaller at least 25% with respect to variance of the classical estimator. For such an approach there is no need to estimate unknown θ_1 and θ_2 by preliminary sample. It will be interesting to generalize the above results to the case of more than two “subpopulations”. Work on the subject is in progress.
REFERENCES

