Caspase-3 as an important factor in the early cytotoxic effect of nickel on oral mucosa cells in patients treated orthodontically


Share / Export Citation / Email / Print / Text size:

Folia Histochemica et Cytobiologica

Polish Histochemical and Cytochemical Society

Subject: Medicine


ISSN: 0239-8508
eISSN: 1897-5631





Volume / Issue / page

Related articles

VOLUME 55 , ISSUE 1 (May 2017) > List of articles

  • |

Caspase-3 as an important factor in the early cytotoxic effect of nickel on oral mucosa cells in patients treated orthodontically

Piotr Buczko * / Izabela Szarmach / Monika Grycz / Irena Kasacka

Keywords : orthodontic appliances ,  epithelial oral mucosa cells ,  caspase-3 ,  nickel ,  saliva ,  IHC

Citation Information : Folia Histochemica et Cytobiologica. VOLUME 55 , ISSUE 1 , Pages 37-42 , ISSN (Online) 1897-5631, DOI: 10.5603/FHC.a2017.0004, May 2017 © 2017.Polish Society for Histochemistry and Cytochemistry Folia Histochem Cytobiol.

License : (CC BY-NC-ND 4.0)

Received Date : 11-October-2016 / Accepted: 14-April-2017 / Published Online: 28-April-2017



Introduction. The effect of fixed orthodontic appliances on biochemical changes in saliva and pathophysiological status of the oral cavity is not clear. Recent data showed that nickel (Ni) released from orthodontic appliances can decrease cellular viability, induce DNA damage and apoptosis in oral mucosa cells. Since the mechanism of these Ni effects is unknown, the aim of our study was to analyze the expression of caspase-3 in epithelial cells of oral mucosa in healthy individuals treated orthodontically.

Material and methods. Twenty-eight volunteers participated in the study. Epithelial cells were collected from oral mucosa directly before appliance insertion, one week after the insertion, and 24 weeks after the insertion of fixed appliances. Cellular identification and measurements were conducted by light microscopy. Caspase-3 expression was evaluated immunohistochemically. Nickel concentration in saliva was also determined.

Results. A significantly higher number of oral epithelial cells with caspase-3 immunoreactivity was found one week, but not 24 weeks, after orthodontic treatment. The enhanced expression of caspase-3 was accompanied by increased nickel concentration in saliva.

Conclusions.Our data suggests that nickel released from orthodontic appliances can activate caspase-3 and this mechanism may be partially responsible for the cytotoxic action of nickel in the oral cavity of orthodontically- treated individuals. (Folia Histochemica et Cytobiologica 2017, Vol. 55, No. 1, 37–42)

Content not available PDF Share



  1. Soesetijo FXA, Darmanto W, Prijatmoko D, et al. The effect of nickel as product of recasting nickel chromium on gingival fibroblasts apoptosis. J Int Dent Med Res. 2015; 8(1): 25–30.
  2. Craig RG, Power JM. Restorative Dental Materials, 11th ed. Mosby Inc, St Louis Missouri 2002.
  3. Gölz L, Knickenberg AC, Keilig L, et al. Nickel ion concentrations in the saliva of patients treated with self-ligating fixed appliances: a prospective cohort study. J Orofac Orthop. 2016; 77(2): 85–93, doi: 10.1007/s00056-016-0012-x, indexed in Pubmed: 26910844.
  4. Hussain HD, Ajith SD, Goel P. Nickel release from stainless steel and nickel titanium archwires - An in vitro study. J Oral Biol Craniofac Res. 2016; 6(3): 213–218, doi: 10.1016/j.jobcr. 2016.06.001, indexed in Pubmed: 27761386.
  5. Fariborz A, Alireza J, Parviz A, et al. Metal ion release from fixed orthodontic appliances an in vivo study. Eur J Orthod. 2012; 34(1): 126–130, doi: 10.1093/ejo/cjq181, indexed in Pubmed:21303810.
  6. Faccioni F, Franceschetti P, Cerpelloni M, et al. In vivo study on metal release from fixed orthodontic appliances and DNA damage in oral mucosa cells. Am J Orthod Dentofacial Orthop. 2003; 124(6): 687–93; discussion 693, doi: 10.1016/S0889540603007418, indexed in Pubmed: 14666083.
  7. Hafez HS, Selim EM, Kamel Eid FH, et al. Cytotoxicity, genotoxicity, and metal release in patients with fixed orthodontic appliances: a longitudinal in-vivo study. Am J Orthod Dentofacial Orthop. 2011; 140(3): 298–308, doi: 10.1016/j. ajodo.2010.05.025, indexed in Pubmed: 21889074.
  8. Almeida A. Genetic determinants of neuronal vulnerability to apoptosis. Cell Mol Life Sci. 2013; 70(1): 71–88,
    doi: 10.1007/s00018-012-1029-y, indexed in Pubmed: 22695677.
  9. Yu J, Zhao F, Wen X, et al. Apoptosis mechanism of gingival fibroblasts induced by nickel ion contained in dental cast alloys. Biomed Mater Eng. 2012; 22(1-3): 151–157, doi: 10.3233/BME-2012-0701, indexed in Pubmed: 22766714.
  10. Shi T, Qin T, Zhan D. Evaluation of biocompatibility of the medical nickel-free stainless steel by detecting expression of caspase-3. Oral Biomed. 2010; 03: 010.
  11. Herman GE, Elfont EA. The taming of immunohistochemistry:the new era of quality control. Biotech Histochem. 1991; 66(4): 194–199, indexed in Pubmed: 1912080.
  12. Kocadereli L, Ataç PA, Kale PS, et al. Salivary nickel and chromium in patients with fixed orthodontic appliances. Angle Orthod. 2000; 70(6): 431–434, doi: 10.1043/0003-3219(2000)070 <0431:SNACIP>2.0.CO;2, indexed in Pubmed:11138646.
  13. Buczko P, Knaś M, Szarmach I, et al. The impact of orthodontic treatment on antioxidant capacity of saliva. Adv Med Sci. 2016.
  14. Latvala S, Hedberg J, Di Bucchianico S, et al. Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles. PLoS One. 2016; 11(7): e0159684, doi: 10.1371/journal. pone.0159684, indexed in Pubmed: 27434640.
  15. Natarajan M, Padmanabhan S, Chitharanjan A, et al. Evaluation of the genotoxic effects of fixed appliances on oral mucosal cells and the relationship to nickel and chromium concentrations: an in-vivo study. Am J Orthod Dentofacial Orthop. 2011; 140(3): 383–388, doi: 10.1016/j.ajodo.2010.07.027, indexed in Pubmed: 21889083.
  16. Yao H, Tang X, Shao X, et al. Parthenolide protects human lens epithelial cells from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and caspase-9. Cell Res. 2007; 17(6): 565–571, doi: 10.1038/cr.2007.6, indexed in Pubmed: 17339884.
  17. Carvour M, Song C, Kaul S, et al. Chronic low-dose oxidative stress induces caspase-3-dependent PKCdelta proteolytic activation and apoptosis in a cell culture model of dopaminergic neurodegeneration. Ann N Y Acad Sci. 2008; 1139: 197–205, doi: 10.1196/annals.1432.020, indexed in Pubmed: 18991865.
  18. Kalia S, Bansal MP. Regulation of apoptosis by Caspases under oxidative stress conditions in mice testicular cells: in vitro molecular mechanism. Mol Cell Biochem. 2009; 322(1-2): 43–52, doi: 10.1007/s11010-008-9938-7, indexed in Pubmed: 18979186.
  19. Savitskaya MA, Onishchenko GE, Savitskaya MA, et al. Mechanisms of Apoptosis. Biochemistry (Mosc). 2015; 80(11): 1393–1405, doi: 10.1134/S0006297915110012, indexed in Pubmed:26615431.
  20. Labbé D, Teranishi MA, Hess A, et al. Activation of caspase-3 is associated with oxidative stress in the hydropic guinea pig cochlea. Hear Res. 2005; 202(1-2): 21–27, doi: 10.1016/j. heares.2004.10.002, indexed in Pubmed: 15811695.
  21. Tan SN, Sim SP, Khoo ASB. Potential role of oxidative stress-induced apoptosis in mediating chromosomal rearrangements in nasopharyngeal carcinoma. Cell Biosci. 2016; 6: 35, doi: 10.1186/s13578-016-0103-9, indexed in Pubmed:27231526.



  • |