The FORS awakens: review of a blood group system reborn

Publications

Share / Export Citation / Email / Print / Text size:

Immunohematology

American National Red Cross

Subject: Medical Laboratory Technology

GET ALERTS

ISSN: 0894-203X
eISSN: 1930-3955

DESCRIPTION

0
Reader(s)
0
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 33 , ISSUE 2 (June 2017) > List of articles

The FORS awakens: review of a blood group system reborn

Annika K. Hult * / Martin L. Olsson

Keywords : FORS, FORS1, low-prevalence antigen, Forssman, Apae  

Citation Information : Immunohematology. Volume 33, Issue 2, Pages 64-72, DOI: https://doi.org/10.21307/immunohematology-2019-010

License : (Transfer of Copyright)

Published Online: 09-October-2019

ARTICLE

ABSTRACT

The presence of the FORS1 antigen on red blood cells was discovered relatively recently, and in 2012, the International Society of Blood Transfusion (ISBT) acknowledged FORS as blood group system number 031. This rare antigen is carried by a glycosphingolipid and formed by elongation of the P antigen. Most people have naturally occurring anti-FORS1 in their plasma. The clinical significance of these antibodies is unknown in the transfusion setting, but they can hemolyze FORS1+ erythrocytes in the presence of complement in vitro. First believed to be part of the ABO system, it was later shown that the gene encoding the glycosyltransferase giving rise to FORS1 expression is GBGT1. This gene had previously been deemed nonfunctional in humans, but a mutation, so far only detected in FORS1+ individuals, restores the enzymatic activity. Tissue distribution of the antigen in FORS1+ individuals has not been studied in detail, although the gene is expressed in several cell types. The antigen itself is known to be a receptor for various pathogens and toxins and has been detected in different forms of cancer, but the implications thereof are not fully understood.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Landsteiner K. Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Zbl Bakt 1900;27:357–62.

2. Landsteiner K. Über Agglutinationserscheinungen normalen Menschlichen Blutes. Wiener Klinische Wochenschrift 1901;14:1132–4.

3. Kabat EA. Blood group substances: their chemistry and immunohistochemistry. New York: Academic Press, 1956.

4. Morgan WT, Watkins WM. Some aspects of the biochemistry of the human blood-group substances. Br Med Bull 1959;15:109– 13.

5. Varki A. Essentials of glycobiology. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2009.

6. Gagneux P, Varki A. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 1999;9:747–55.

7. Neil SJ, McKnight A, Gustafsson K, Weiss RA. HIV-1 incorporates ABO histo-blood group antigens that sensitize virions to complement-mediated inactivation. Blood 2005; 105:4693–9.

8. Preece AF, Strahan KM, Devitt J, Yamamoto F, Gustafsson K. Expression of ABO or related antigenic carbohydrates on viral envelopes leads to neutralization in the presence of serum containing specific natural antibodies and complement. Blood 2002;99:2477–82.

9. Dixon FJ Jr, Humphrey JH (eds). Advances in immunology. San Diego, CA: Academic Press, 1963:351.

10. Forssman J. Die Herstellung hochwertiger spezifisher Schafhämolysin ohne Verwendung von Schaftblut: Ein Beitrag Zur Lehre von heterolofer Antikörperbildung. Biochem Zeit 1911;37:78–115.

11. Leduc EH, Tanaka N. A study of the cellular distribution of Forssman antigen in various species. J Immunol 1956;77:198– 212.

12. Hakomori S, Wang SM, Young WW Jr. Isoantigenic expression of Forssman glycolipid in human gastric and colonic mucosa: its possible identity with "A-like antigen" in human cancer. Proc Natl Acad Sci U S A 1977;74:3023–7.

13. Kawanami J. The appearance of Forssman hapten in human tumor. J Biochem 1972;72:783–5.

14. Mori E, Mori T, Sanai Y, Nagai Y. Radioimmuno-thinlayer chromatographic detection of Forssman antigen in human carcinoma cell lines. Biochem Biophys Res Commun 1982;108:926–32.

15. Uemura K, Hattori H, Ono K, Ogata H, Taketomi T. Expression of Forssman glycolipid and blood group-related antigens A, Le(x), and Le(y) in human gastric cancer and in fetal tissues. Jpn J Exp Med 1989;59:239–49.

16. Ono K, Hattori H, Uemura K, Nakayama J, Ota H, Katsuyama T. Expression of Forssman antigen in human large intestine. J Histochem Cytochem 1994;42:659–65.

17. Yokota M, Warner GA, Hakomori S. Blood group A–like glycolipid and a novel Forssman antigen in the hepatocarcinoma of a blood group O individual. Cancer Res 1981;41:4185–90.

18. Breimer M. Chemical and immunological identification of the Forssman pentaglycosylceramide in human kidney. Glycoconj J 1985;2:375–85.

19. Siddiqui B, Hakomori S. A revised structure for the Forssman glycolipid hapten. J Biol Chem 1971;246:5766–9.

20. Karlsson KA, Leffler H, Samuelsson BE. Characterization of the Forssman glycolipid hapten of horse kidney by mass spectrometry. J Biol Chem 1974;249:4819–23.

21. Moore TL, Dorner RW. 19S IgM Forssman-type heterophile antibodies in juvenile rheumatoid arthritis. Arthritis Rheum 1980;23:1262–7.

22. Ilyas AA, Mithen FA, Chen ZW, Cook SD. Search for antibodies to neutral glycolipids in sera of patients with Guillain-Barre syndrome. J Neurol Sci 1991;102:67–75.

23. Ariga T, Yoshida T, Mimori T, Yu RK. Autoantibodies against Forssman glycolipids in Graves' disease and Hashimoto's thyroiditis. Clin Exp Immunol 1991;86:483–8.

24. Brouard S, Bouhours D, Sebille F, Menoret S, Soulillou JP, Vanhove B. Induction of anti-Forssman antibodies in the hamster-to-rat xenotransplantation model. Transplantation 2000;69:1193–201.

25. Gustavsson ML, Johnsson C, Albertsson P, et al. Characterization of Forssman and other antigen/antibody systems in vascularized mouse heart to rat xenotransplantation. Scand J Immunol 2001;53:121–31.

26. Yeh P, Ezzelarab M, Bovin N, et al. Investigation of potential carbohydrate antigen targets for human and baboon antibodies. Xenotransplantation 2010;17:197–206.

27. Storry JR, Castilho L, Daniels G, et al. International Society of Blood Transfusion Working Party on Red Cell Immunogenetics and Blood Group Terminology: Cancun report (2012). Vox Sang 2014;107:90–6.

28. Stamps R, Sokol RJ, Leach M, Herron R, Smith G. A new variant of blood group A. Apae. Transfusion 1987;27:315–8.

29. Issitt PD, Anstee DJ. Applied blood group serology. Miami, FL: Montgomery Scientific Publications, 1998.

30. Svensson L, Hult AK, Stamps R, et al. Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo-blood group system. Blood 2013;121:1459–68.

31. Slomiany BL, Banas-Gruszka Z, Kojima K, Herp A, Slomiany A. The glycoprotein nature of Forssman antigen in dog gastric mucus. FEBS Lett 1981;130:201–4.

32. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009;37:D233–8.

33. Yamamoto F, Clausen H, White T, Marken J, Hakomori S. Molecular genetic basis of the histo-blood group ABO system. Nature 1990;345:229–33.

34. Koike C, Fung JJ, Geller DA, et al. Molecular basis of evolutionary loss of the alpha 1,3-galactosyltransferase gene in higher primates. J Biol Chem 2002;277:10114–20.

35. Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem 1988;263:17755–62.

36. Keusch JJ, Manzella SM, Nyame KA, Cummings RD, Baenziger JU. Expression cloning of a new member of the ABO blood group glycosyltransferases, iGb3 synthase, that directs the synthesis of isoglobo-glycosphingolipids. J Biol Chem 2000;275:25308–14.

37. Xu H, Storch T, Yu M, Elliott SP, Haslam DB. Characterization of the human Forssman synthetase gene: an evolving association between glycolipid synthesis and host-microbial interactions. J Biol Chem 1999;274:29390–8.

38. Yamamoto M, Cid E, Yamamoto F. Molecular genetic basis of the human Forssman glycolipid antigen negativity. Sci Rep 2012;2:975.

39. Turcot-Dubois AL, Le Moullac-Vaidye B, Despiau S, et al. Longterm evolution of the CAZY glycosyltransferase 6 (ABO) gene family from fishes to mammals: a birth-and-death evolution model. Glycobiology 2007;17:516–28.

40. Eirin-Lopez JM, Rebordinos L, Rooney AP, Rozas J. The birthand-death evolution of multigene families revisited. Genome Dyn 2012;7:170–96.

41. Haslam DB, Baenziger JU. Expression cloning of Forssman glycolipid synthetase: a novel member of the histo-blood group ABO gene family. Proc Natl Acad Sci U S A 1996;93: 10697–702.

42. Elliott SP, Yu M, Xu H, Haslam DB. Forssman synthetase expression results in diminished shiga toxin susceptibility: a role for glycolipids in determining host–microbe interactions. Infect Immun 2003;71:6543–52.

43. NHLBI GO Exome Sequencing Project (ESP). Exome variant server. http://evs.gs.washington.edu/EVS/.

44. Möller M, Jöud M, Storry JR, Olsson ML. Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 Genomes Project. Blood Adv 2016;1:240–9.

45. Barr K, Korchagina E, Popova I, Bovin N, Henry S. Monoclonal anti-A activity against the FORS1 (Forssman) antigen. Transfusion 2015;55:129–36.

46. Frame T, Carroll T, Korchagina E, Bovin N, Henry S. Synthetic glycolipid modification of red blood cell membranes. Transfusion 2007;47:876–882.

47. Springer GF, Horton RE. Blood group isoantibody stimulation in man by feeding blood group-active bacteria. J Clin Invest 1969;48:1280–91.

48. Young WW Jr, Hakomori SI, Levine P. Characterization of antiForssman (anti-Fs) antibodies in human sera: their specificity and possible changes in patients with cancer. J Immunol 1979;123:92–6.

49. Strokan V, Rydberg L, Hallberg EC, Molne J, Breimer ME. Characterisation of human natural anti-sheep xenoantibodies. Xenotransplantation 1998;5:111–21.

50. Jesus C, Hesse C, Rocha C, et al. Prevalence of antibodies to a new histo-blood system: the FORS system. Blood Transfus 2016:1–6. doi: 10.2450/2016.0120-16.

51. Boren T, Falk P, Roth KA, Larson G, Normark S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 1993;262:1892–5.

52. Thorven M, Grahn A, Hedlund KO, et al. A homozygous nonsense mutation (428G-->A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J Virol 2005;79:15351–5.

53. Vildevall M, Grahn A, Oliver SL, et al. Human antibody responses to bovine (Newbury-2) norovirus (GIII.2) and association to histo-blood group antigens. J Med Virol 2010;82:1241–6.

54. Rowe JA, Handel IG, Thera MA, et al. Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced rosetting. Proc Natl Acad Sci U S A 2007;104:17471–6.

55. Cserti CM, Dzik WH. The ABO blood group system and plasmodium falciparum malaria. Blood 2007;110:2250–8.

56. Wolofsky KT, Ayi K, Branch DR, et al. ABO blood groups influence macrophage-mediated phagocytosis of Plasmodium falciparum-infected erythrocytes. PLoS Pathog 2012;8:e1002942.

57. Goel S, Palmkvist M, Moll K, et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat Med 2015;21:314–7.

58. Bock K, Breimer ME, Brignole A, et al. Specificity of binding of a strain of uropathogenic Escherichia coli to Gal alpha 1–4Gal-containing glycosphingolipids. J Biol Chem 1985;260: 8545–51.

59. Muthing J, Meisen I, Zhang W, et al. Promiscuous Shiga toxin 2e and its intimate relationship to Forssman. Glycobiology 2012;22:849–62.

60. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 2015;15:540–55.

61. Forbes SA, Beare D, Boutselakis H, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 2017;45:D777–83.

62. Yamamoto M, Cid E, Yamamoto F. Crosstalk between ABO and Forssman (FORS) blood group systems: FORS1 antigen synthesis by ABO gene-encoded glycosyltransferases. Sci Rep 2017;7:41632.

63. Jacob F, Hitchins MP, Fedier A, et al. Expression of GBGT1 is epigenetically regulated by DNA methylation in ovarian cancer cells. BMC Mol Biol 2014;15:24.

EXTRA FILES

COMMENTS