Effect of cryopreservation on a rare McLeod donor red blood cell concentrate

Publications

Share / Export Citation / Email / Print / Text size:

Immunohematology

American National Red Cross

Subject: Medical Laboratory Technology

GET ALERTS SUBSCRIBE

ISSN: 0894-203X
eISSN: 1930-3955

DESCRIPTION

0
Reader(s)
0
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Archive
Volume 37 (2021)
Volume 36 (2020)
Volume 35 (2019)
Volume 34 (2018)
Volume 33 (2017)
Volume 32 (2016)
Volume 31 (2015)
Volume 30 (2014)
Volume 29 (2013)
Volume 28 (2012)
Volume 27 (2011)
Volume 26 (2010)
Volume 25 (2009)
Volume 24 (2008)
Volume 23 (2007)
Volume 22 (2006)
Volume 21 (2005)
Volume 20 (2004)
Volume 19 (2003)
Volume 18 (2002)
Volume 17 (2001)
Volume 16 (2000)
Volume 15 (1999)
Volume 14 (1998)
Volume 13 (1997)
Volume 12 (1996)
Volume 11 (1995)
Volume 10 (1994)
Volume 9 (1993)
Volume 8 (1992)
Volume 7 (1991)
Volume 6 (1990)
Volume 5 (1989)
Volume 4 (1988)
Volume 3 (1987)
Related articles

VOLUME 37 , ISSUE 2 (Jun 2021) > List of articles

Effect of cryopreservation on a rare McLeod donor red blood cell concentrate

T.R. Turner / G. Clarke / G.A. Denomme / R. Skeate / J.P. Acker *

Keywords : erythrocyte, cryopreservation, McLeod phenotype, deglycerolization, genotyping, acanthocyte

Citation Information : Immunohematology. Volume 37, Issue 2, Pages 78-83, DOI: https://doi.org/10.21307/immunohematology-2021-012

License : (Transfer of Copyright)

Published Online: 25-June-2021

ARTICLE

ABSTRACT

Units of red blood cell (RBC) concentrates with rare phenotypes are typically not included in method validation studies for cryopreservation processes; rather, they are reserved for patients with rare blood needs. Some rare RBC phenotypes may demonstrate membrane abnormalities, like acanthocytosis as observed for RBCs with the McLeod phenotype, and are specifically banked for these rare attributes; however, the impact that rare RBC phenotypes have on post-thaw quality has not been well studied. To evaluate how a rare RBC phenotype is affected by the cryopreservation process, 4 RBC units, cryopreserved in 1993 using manual methods, were selected for evaluation. These RBCs included one with the McLeod phenotype and three with phenotypes not known to cause significant membrane changes. Post-thaw, an altered deglycerolization protocol, implemented to reduce supernatant glycerol after cryopreservation, was used before processing RBCs on an automated closed system (ACP 215; Haemonetics, Boston, MA) to accommodate the use of a closed system cell processor not available when the RBC units were previously cryopreserved. RBC quality was tested at 24 hours, 7 days, and 14 days post-deglycerolization. Before deglycerolization, an extracted sample from the thawed glycerolized RBC unit was used to obtain genetic material for phenotype confirmation. Genotyping confirmed the McLeod phenotype. When comparing McLeod with non-McLeod units, RBCs from the McLeod donor exhibited acanthocytosis, higher rigidity, and lower morphology scores than RBCs from the non-McLeod units post-deglycerolization. Hemolysis, however, was comparable across all 4 units, meeting regulatory standards. Therefore, McLeod RBCs can withstand cryopreservation, suggesting that units from these donors, glycerolized using older methods, can be deglycerolized using the ACP 215 and stored hypothermically for 14 days. It was also determined that genotyping can be performed on non-leukocyte–reduced cryopreserved RBCs, allowing for confirmation of genetic profiles of donor units banked before the implementation of molecular methods.

Graphical ABSTRACT

You don't have 'Full Text' access of this article.

Purchase Article Subscribe Journal Share