DESIGN AND DEVELOPMENT OF 3D PRINTED MYOELECTRIC ROBOTIC EXOSKELETON FOR HAND REHABILITATION

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

161
Reader(s)
400
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 10 , ISSUE 2 (June 2017) > List of articles

DESIGN AND DEVELOPMENT OF 3D PRINTED MYOELECTRIC ROBOTIC EXOSKELETON FOR HAND REHABILITATION

Ismail Ben Abdallah * / Yassine Bouteraa * / Chokri Rekik *

Keywords : robotic exoskeleton,  3D printing,  EMG control,  features extraction,  stroke rehabilitation.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 10, Issue 2, Pages 341-366, DOI: https://doi.org/10.21307/ijssis-2017-215

License : (CC BY-NC-ND 4.0)

Received Date : 06-February-2017 / Accepted: 16-April-2017 / Published Online: 01-June-2017

ARTICLE

ABSTRACT

The development of dynamic rehabilitation devices can be evaluated as a research fast-growing field. Indeed, robot-assisted therapy is an advanced new technology mainly in stroke rehabilitation. Although patients benefit from this enormous development of technology, including the presence of rehabilitation robots, the therapeutic field still suffering a lack in hand robotic rehabilitation devices. In this context, this work proposes a new design of a 3D printed hand exoskeleton for the stroke rehabilitation. Based on the EMG signals measured from the muscles responsible for the hand motion, the designed mechatronic system detects the intention of hand opening or hand closing from the stroked subject. Based on an embedded controller and five servomotors, the low cost robotic system is able to drive in real time three degrees of freedom (DOFs) for each finger. The real tests with stroked subjects showed that the designed hand exoskeleton architecture has a positive effect on the motion finger range and mainly in the hand ability to perform some simple tasks. The case studies showed a good recovery of the motor functions and consequently the developed system efficiency.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. Aabdallah, I.B., Bouteraa, Y. and Rekik, C. (2016). ‘Design of smart robot for wrist rehabilitation’. International journal of smart sensing and intelligent systems. vol. 9, no. 2.
  2. Mehdi, H., & Boubaker, O. (2012). ‘Robot-assisted therapy: design, control and optimization’. International Journal on Smart Sensing and Intelligent Systems, 5(4), 1044-1062.
  3. Orihuela-Espina, F., Roldán, G. F., Sánchez-Villavicencio, I., Palafox, L., Leder, R., Sucar, L. E., & Hernández-Franco, J. (2016). ‘Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial’. Journal of Hand Therapy, 29(1), 51-57.
  4. Y. Bouteraa and I. Ben Abdallah, Exoskeleton robots for upper-limb rehabilitation, 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, pp 1-6.
  5. Mazzoleni, S., Sale, P., Franceschini, M., Bigazzi, S., Carrozza, M.C., Dario, P. and Posteraro, F. (2013). ‘Effects of proximal and distal robot-assisted upper limb rehabilitation on chronic stroke recovery’. NeuroRehabilitation, 33 (1) 33–39.
  6. Gerloff, C., Corwell, B., Chen, R., Hallett, M. and Cohen, L.G. (1998), ‘The role of the human motor cortex in the control of complex and simple finger movement sequences’. Brain, 121(9), 1695-1709.
  7. Heo, P., Gu, G. M., Lee, S. J., Rhee, K., & Kim, J. (2012). ‘Current hand exoskeleton technologies for rehabilitation and assistive engineering’. International Journal of Precision Engineering and Manufacturing, 13(5), 807-824.
  8. Bos, R. A., Haarman, C. J., Stortelder, T., Nizamis, K., Herder, J. L., Stienen, A. H., & Plettenburg, D. H. (2016). ‘A structured overview of trends and technologies used in dynamic hand orthoses’. Journal of NeuroEngineering and Rehabilitation, 13(1), 62.
  9. Cesqui, B., Tropea, P., Micera, S., & Krebs, H. I. (2013). ‘EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study’. Journal of neuroengineering and rehabilitation, 10(1), 1.
  10. Song, R., Tong, K. Y., Hu, X., & Zhou, W. (2013). ‘Myoelectrically controlled wrist robot for stroke rehabilitation’. Journal of neuroengineering and rehabilitation, 10(1), 1.
  11. Ryait, H. S., Arora, A. S., & Agarwal, R. (2009). ‘Study of issues in the development of surface EMG controlled human hand’. Journal of Materials Science: Materials in Medicine, 20(1), 107-114.
  12. Lee, S. W., Wilson, K. M., Lock, B. A., & Kamper, D. G. (2011). ‘Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors’. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(5), 558-566.
  13. Ho, N. S. K., Tong, K. Y., Hu, X. L., Fung, K. L., Wei, X. J., Rong, W., & Susanto, E. A. (2011, June). ‘An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation’. In Proceedings of the 2011 IEEE international conference on rehabilitation robotics (pp. 1-5).
  14. Kiguchi, K. (2007, June). ‘A study on emg-based human motion prediction for power assist exoskeletons’. In Proceedings of the 2007 International Symposium on Computational Intelligence in Robotics and Automation (pp. 190-195).
  15. Masia, L., Krebs, H. I., Cappa, P., & Hogan, N. (2007, June). ‘Design, characterization, and impedance limits of a hand robot’. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics (pp. 1085-1089).
  16. Takahashi, C. D., Der-Yeghiaian, L., Le, V., Motiwala, R. R., & Cramer, S. C. (2008). ‘Robot-based hand motor therapy after stroke’. Brain, 131(2), 425-437.
  17. Kawasaki, H., Ito, S., Ishigure, Y., Nishimoto, Y., Aoki, T., Mouri, T. & Abe, M. (2007, June). ‘Development of a hand motion assist robot for rehabilitation therapy by patient self-motion control’. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics (pp. 234-240).
  18. Hasegawa, Y., Mikami, Y., Watanabe, K., Firouzimehr, Z., & Sankai, Y. (2008, September). ‘Wearable handling support system for paralyzed patient’. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 741-746).
  19. Lambercy, O., Dovat, L., Yun, H., Wee, S. K., Kuah, C., Chua, K. & Burdet, E. (2009, June). ‘Rehabilitation of grasping and forearm pronation/supination with the Haptic Knob’. In Proceedings of the IEEE International Conference on Rehabilitation Robotics (pp. 22-27).
  20. Dovat, L., Lambercy, O., Gassert, R., Maeder, T., Milner, T., Teo C. and Burdet, E. (2008), ‘HandCARE: A cable-actuated rehabilitation system to train hand function after stroke’, IEEE Transaction in Neural Systems and Rehabilitation Engineering, 16(6), pp. 582–591.
  21. Dovat, L., Lambercy, O., Gassert, R., Maeder, T., Milner, T., Teo C. and Burdet, E. (2008), ‘HandCARE: A cable-actuated rehabilitation system to train hand function after stroke’, IEEE Transaction in Neural Systems and Rehabilitation Engineering, 16(6), pp. 582–591.
  22. Schabowsky, C. N., Godfrey, S. B., Holley, R. J., & Lum, P. S. (2010). ‘Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot’. Journal of neuroengineering and rehabilitation, 7(1), 1.
  23. Borboni, A., Mor, M. and Faglia, R. (2016), ‘Gloreha-Hand Robotic Rehabilitation: Design, Mechanical Model, and Experiments’ J. Dyn. Sys., Meas., Control 138(11), 111003.
  24. The Amadeo® System, Tyromotion. [Online]. Available: http://www.tyromotion.com/en/products/amadeo/.
  25. Maestra Hand and Wrist CPM, Sammons Preston. [Online]. Available: http://www.sammonspreston.com/app.aspx?cmd=get_product&id=91378.
  26. Heo, P., Gu, G. M., Lee, S. J., Rhee, K., & Kim, J. (2012). ‘Current hand exoskeleton technologies for rehabilitation and assistive engineering’. International Journal of Precision Engineering and Manufacturing, 13(5), 807-824.
  27. Aguilar-Pereyra, J.F. and Castillo-Castaneda, E. (2016) ‘Design of a Reconfigurable Robotic System for Flexoextension Fitted to Hand Fingers Size’. Applied Bionics and Biomechanics, vol. 2016, Article ID 1712831, 10 pages.
  28. Negi, S., Dhiman, S., & Kumar Sharma, R. (2014). ‘Basics and applications of rapid prototyping medical models’. Rapid Prototyping Journal, 20(3), 256-267.
  29. Hieu, L. C., Sloten, J. V., Hung, L. T., Khanh, L., Soe, S., Zlatov, N., ... & Trung, P. D. (2010, September). ‘Medical reverse engineering applications and methods’. In 2ND International Conference on Innovations, Recent Trends and Challenges in Mechatronics, Mechanical Engineering and New High-Tech Products Development, MECAHITECH (Vol. 10, pp. 232-246).
  30. Baronio, G., Harran, S. and Signoroni, A. (2016), ‘A critical analysis of a hand orthosis reverse engineering and 3D printing process’, Applied Bionics and Biomechanics, vol. 2016, Article ID 8347478, 7 pages.
  31. Yeow, C. H., Baisch, A. T., Talbot, S. G., & Walsh, C. J. (2014). ‘Cable-Driven Finger Exercise Device With Extension Return Springs for Recreating Standard Therapy Exercises’. Journal of Medical Devices, 8(1), 014502.
  32. Cram, J. R., Kasman, G. S. and Holtz, J. (2010), ‘Introduction to Surface Electromyography’, 2nd ed. Jones and Bartlett Publishers, 2010.
  33. Phinyomark, A., Phukpattaranont, P., & Limsakul, C. (2012). ‘Fractal analysis features for weak and single-channel upper-limb EMG signals’. Expert Systems with Applications, 39(12), 11156-11163.
  34. Mello, R. G., Oliveira, L. F., & Nadal, J. (2007). ‘Digital Butterworth filter for subtracting noise from low magnitude surface electromyogram’. Computer methods and programs in biomedicine, 87(1), 28-35.
  35. De Luca, C.J., Donald, L.G., Mikhail, K. and Serge, H.R. (2010). ‘Filtering the surface EMG signal: Movement artifact and baseline noise contamination’. Journal of Biomechanics, 43 (8), pp. 1573–1579.
  36. Phinyomark, A., Phukpattaranont, P., & Limsakul, C. (2012c). ‘Feature reduction and selection for EMG signal classification’. Expert Systems with Applications, 39(8), 7420–7431.
  37. Oskoei, M. A., & Hu, H. (2008). ‘Support vector machine-based classification scheme for myoelectric control applied to upper limb’. IEEE transactions on biomedical engineering, 55(8), 1956-1965.
  38. Phinyomark, A., Limsakul, C., & Phukpattaranont, P. (2009a). ‘A novel feature extraction for robust EMG pattern recognition’, Journal of Computing, 1(1), 71–80.

EXTRA FILES

COMMENTS