DESIGN AND IMPLEMENTATION OF PREDICTIVE CONTROLLERS ON THE RECTIFIER AND QUASI IMPEDANCESOURCE INVERTER IN A WIND ENERGY CONVERSION SYSTEM BASED ON PERMANENT MAGNET SYNCHRONOUS GENERATOR

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

8
Reader(s)
26
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 10 , ISSUE 2 (June 2017) > List of articles

DESIGN AND IMPLEMENTATION OF PREDICTIVE
CONTROLLERS ON THE RECTIFIER AND QUASI IMPEDANCESOURCE INVERTER IN A WIND ENERGY CONVERSION SYSTEM BASED ON PERMANENT MAGNET SYNCHRONOUS GENERATOR

Hamed Javaheri Fard *

Keywords : Predictive Control, Wind Energy, Permanent Magnet Synchronous Generator, Rectifier, Quasi Impedance-Source Inverter.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 10, Issue 2, Pages 451-490, DOI: https://doi.org/10.21307/ijssis-2017-220

License : (CC BY-NC-ND 4.0)

Received Date : 14-November-2016 / Accepted: 23-April-2017 / Published Online: 01-June-2017

ARTICLE

ABSTRACT

Two controllers are proposed in this paper. These controllers have been designed and implemented on the rectifier and quasi impedance-source inverter (QZSI) in the wind energy conversion system based on permanent magnet synchronous generator (PMSG). Model based predictive control strategy (MBPC) has been used at the proposed design for both controllers. Control of parameters such as load current, inductor current and capacitor voltage are the major aim of design of predictive controllers; hence; two cost function (CF) are employed to realize this subject which in those exist objective controls. The MATLAB-simulation and experimental results show that the predictive controllers can be robust and effective in controlling the desired
parameters.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. Y. Haile, K. Buse, C. Laszlo, R. Saillant and J. Gaskin, “Eco-communal management, transition engagement, and connectedness A moderated mediation model for the performance of renewable energy projects in emerging economies”, International Conference on Renewable Energy Research and Applications (ICRERA), IEEE, 2015, pp. 683 - 688.
  2. C. B. Mosleh, P. Rahme, P. Beaino, R. Mattar and E. A. Nassif, “Contribution to clean energy production using a novel wave energy converter: Renewable energy”, Renewable Energies for Developing Countries (REDEC), 2014 International Conference on, IEEE, 2014, pp. 108 - 111.
  3. J. C. Y. Hui, A. Bakhshai and P. K. Jain, “An Energy Management Scheme With Power Limit Capability and an Adaptive Maximum Power Point Tracking for Small Standalone PMSG Wind Energy Systems”, IEEE Transactions on Power Electronics, vol. 31, No. 7, 2016, pp. 4861 - 4875.
  4. R. A. Gupta, B. Singh and B. B. Jain, “Wind energy conversion system using PMSG”, Recent Developments in Control, Automation and Power Engineering (RDCAPE), IEEE, 2015, pp. 199 -203.
  5. A. Rolán, F. C. López, S. Bogarra, L. Monjo and J. Pedra, “Reduced-Order Models of Squirrel-Cage Induction Generators for Fixed-Speed Wind Turbines Under Unbalanced Grid Conditions”, IEEE Transactions on Energy Conversion, Vol. 31, No. 2, 2016, pp. 566 - 577.
  6. M. H. Zamani, S. H. Fathi, G. H. Riahy, M. Abedi and N. Abdolghani, “Improving Transient Stability of Grid-Connected Squirrel-Cage Induction Generators by Plugging Mode Operation”, IEEE Transactions on Energy Conversion, Vol. 27, No. 3, 2012, pp. 707 - 714.
  7. R. Joseph and L. Umanand, “A Brushless Wound Rotor Induction Generator for Variable Speed Microhydel Plants Without Ballast Load”, IEEE Transactions on Sustainable Energy, Vol. 6, No. 1,2015, pp. 20 - 27.
  8. Z. Li and J. Ma, “Research on variable-speed and variable-pitch wind doubly fed induction generator system and its multivariable coordinated control”, The 27th Chinese Control and Decision Conference (2015 CCDC), IEEE, 2015. pp. 5865 - 5869.
  9. A. S. Helmy, A. Shaltout and N. Abdel-Rahim, “Improving the efficiency of a Doubly-Fed Induction Generator in variable speed wind turbines under different modes of operation considering core loss”,Smart Energy Grid Engineering (SEGE), IEEE, 2015, pp. 1 - 8.
  10. N. Budisan, R. Boraci, C. Koch-Ciobotaru, G. Prostean and C. Musca, “On permanent-magnet synchronous generator current harmonics, due to rectifier at the generator end of the variable speed generator sets converter systems”, Computational Cybernetics and Technical Informatics (ICCCCONTI),IEEE, 2010, pp. 471 - 474.
  11. F. Blaabjerg and K. Maand, “Future on Power Electronics for Wind Turbine Systems”, IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 1, No. 3, 2013, pp. 139 - 152.
  12. L. H. Hansen, P. H. Madsen, F. Blaabjerg, H. C. Christensen, U. Lindhard and K. Eskildsen, “Generators and power electronics technology for wind turbines”, Industrial Electronics SocietyI ECON '01. The 27th Annual Conference of the IEEE, 2001, pp. 2000 - 2005.
  13. Z. Chen, J. M. Guerrero and F. Blaabjerg, “A Review of the State of the Art of Power Electronics for Wind Turbines”, IEEE Transactions on Power Electronics, Vol. 24, No. 8, 2009, pp. 1859 - 1875.
  14. H. S. Kim and D. Dah-Chuan Lu, “Review on wind turbine generators and power electronic converters with the grid-connection issues”, Universities Power Engineering Conference (AUPEC).20th Australasian, IEEE, 2010, pp. 2000 - 2005.
  15. C. N. Wang, X. K. Le and W. C. Lin, “Modeling and Simulation of Autonomous Control PMSG Wind Turbine”, Computer, Consumer and Control (IS3C), IEEE, 2014, pp. 1144 - 1147.
  16. V. Z. Manusov and S. K. Khaldarov, “Adaptive control of a variable wind speed turbine based on fuzzy logic”, Actual Problems of Electronics Instrument Engineering (APEIE), IEEE, 2014, pp. 829 -831.
  17. L. Qingsong and Q. Suxiang, “Sliding mode variable pitch control of wind turbine via fuzzy neural network”, Control Conference (CCC). 31st Chinese, IEEE, pp. 3187 - 3191.
  18. X. Zhang, W. Wang, D. Liu, H. Wang, X. Cao and S. He, “Matrix converter control study of doublyfed induction wind turbine generator system”, 11th International Conference on Power Electronics and Drive Systems, IEEE, 2015, pp. 139 - 142.
  19. Z. Zhang and R. Kennel, “Direct Model Predictive Control of three-level NPC back-to-back power converter PMSG wind turbine systems under unbalanced grid”, International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), IEEE, 2015, pp. 97 - 102.
  20. Z. Zhang, Y. Zhao, W. Qiao and L. Qu, “A Discrete-Time Direct Torque Control for Direct-Drive PMSG-Based Wind Energy Conversion Systems”, IEEE Transactions on Industry Applications, Vol.51, No. 4, 2015, pp. 3504 - 3514.
  21. F. Louar, A. Ouari, A. Omeiri, F. Senani and A. Rahab, “Direct power control (DPC) of PMSG based wind energy conversion system”, 2015 4th International Conference on Electrical Engineering (ICEE), IEEE, 2015, pp. 1 - 6.
  22. A. Hussien, M. Taha and Ossama A. Mahgoub, “Design and Control of a Quasi-Z-Source Inverter Based for Wind Power Generation using PMSG”, Environment and Electrical Engineering (EEEIC),IEEE, 2015, pp. 2050 - 2055.
  23. H. Javaheri Fard, H. R. Najafi and H. Eliasi, “Active and reactive power control via currents of a rotor’s d and q components with nonlinear predictive control strategy in a doubly fed induction generator based on wind power system”, Energy Equipment and Systems, Vol. 3, No. 2, 2015, pp.143 - 157.
  24. Y. Liu, H. Abu-Rub, B. Ge, F. Blaabjerg, O. Ellabban and P. C. Loh, “Impedance Source Power Electronic Converters”, September 2016, Wiley-IEEE Press.
  25. O. Ellabban and H. Abu-Rub, “Z-Source Inverter: Topology Improvements Review”, IEEE Industrial Electronics Magazine, Vol. 10, No. 1, 2016, pp. 6 - 24.
  26. J. Anderson and F. Z. Peng, “A Class of Quasi-Z-Source Inverters”, Industry Applications Society Annual Meeting, IEEE, 2008, pp. 1 - 7.
  27. J. Anderson and F. Z. Peng, “Four quasi-Z-Source inverters”, Power Electronics Specialists Conference, IEEE, 2008, pp. 2743 - 2749.
  28. O. Ellabban, M. Mosa, H. Abu-Rub and J. Rodriguez, “Model Predictive Control of Grid Connected Quasi-Z-Source Inverter”, Industrial Technology (ICIT), IEEE, 2013, pp. 1591 - 1596.
  29. J. Rodriguez and P. Cortes, “Predictive Control of Power Converters and Electrical Drives”, April 2012, Wiley-IEEE Press.
  30. C. J. Gajanayake, D. M. Vilathgamuwa, and P. C. Loh, “Development of a Comprehensive Model and a Multi-loop Controller for Z-Source Inverter DG Systems”, IEEE Transactions on Industrial Electronics, Vol. 54, No. 4, 2007, pp. 2352 - 2359.
  31. H. Javaheri Fard, H.R. Najafi and G. Heidari, “Design of Discrete Predictive Direct Power Control Strategy on the Doubly-Fed Induction Generator Based on Micro-Hydro Power Plant With the Aim of Active and Reactive Powers Control”, 21st Conference on Electrical Power Distribution Networks Conference (EPDC), IEEE, 2016, pp. 118 - 124.
  32. H. Javaheri Fard, H. R. Najafi and H. Eliasi, “Novel design and simulation of predictive power controller for a doubly-fed induction generator using rotor current in a micro-hydropower plant”,Energy Equipment and Systems, Vol. 5, No. 1, 2017, pp. 43 - 58.
  33. H. Javaheri Fard, H.R. Najafi and H. Eliasi, “Design and Implementation of the Predictive Current Control Strategy in the Form of Laboratory on Single Phase Photovoltaic Grid-Connected Inverter Based on Microcontroller Tms320lf2407a”, 30th International Power System Conference (PSC),2015, pp. 1 - 7.
  34. M. Ramzi and H. Youlal, “Centralized Discrete State Space Model Predictive Control and Decentralized Pi-D Controller of an Aero thermic Process”, S2IS Journal, Vol. 7, No. 4, 2014, pp.1830 - 1849.

EXTRA FILES

COMMENTS