TWO-DEGREE ADJUSTABLE EXOSKELETON FOR ASSISTANCE OF THE HUMAN ARM USING A MECHANICAL SYSTEM OF FAST ASSEMBLY AND UPGRADABILITY

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

20
Reader(s)
65
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 10 , ISSUE 3 (September 2017) > List of articles

TWO-DEGREE ADJUSTABLE EXOSKELETON FOR ASSISTANCE OF THE HUMAN ARM USING A MECHANICAL SYSTEM OF FAST ASSEMBLY AND UPGRADABILITY

Julio Restrepo-Zapata * / Carlos Gallego-Duque * / David Marquez-Viloria * / Juan Botero-Valencia *

Keywords : Active orthosis, Exoskeleton, Interactive adaptation, Wearable-robot

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 10, Issue 3, Pages 491-505, DOI: https://doi.org/10.21307/ijssis-2017-221

License : (CC BY-NC-ND 4.0)

Received Date : 21-May-2017 / Accepted: 17-July-2017 / Published Online: 01-September-2017

ARTICLE

ABSTRACT

Stroke affects about 975,000 people annually. Currently different robotic systems are used, such as exoskeletons that support motor rehabilitation, where they sometimes increase the patient’s possible recovery rate. But these systems are expensive and often require adequate locations for therapy routines. This article offers the mechanical design of an exoskeleton concept for human upper limbs that allows the attachment to the arm and forearm, offering protection, torque, and movement, plus the possibility to adapt to different arm sizes. The biomechanics of the human arm, the kinematics required by the exoskeleton, different design criteria for this type of system, the CAD model, and the simulation of a robotic exoskeleton with an active and passive degree of freedom are considered. As a main result, the exoskeleton includes the biome- chanics of the human arm so that its kinematics allow for adequate human arm movements for providing mechanical assistance, data acquisition and analysis, but also safety.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. American Heart Association, Heart Disease and Stroke Statistics (2017). URL https://www.heart.org/idc/groups/ahamah-public/@wcm/@sop/@smd/documents/downloadable/ucm{_}491265.pdf
  2. N. Jarrasse, T. Proietti, V. Crocher, J. Robertson, A. Sahbani, G. Morel, A. Roby-Brami, Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients, Frontiers in Human Neuroscience 8 (December) (2014) 1–13. doi:10.3389/fnhum.2014.00947. URL http://www.frontiersin.org/Human{_}Neuroscience/10.3389/fnhum.2014.00947/abstract
    [CROSSREF]
  3. A. Frisoli, C. Procopio, C. Chisari, I. Creatini, L. Bonfiglio, M. Bergamasco, B. Rossi, M. Carboncini, Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke, Journal of NeuroEngineering and Rehabilitation 9 (1) (2012) 36. doi:10.1186/1743-0003-9-36.
    [CROSSREF]
  4. S. Guo, F. Zhang, F. Z. Shuxiang Guo2, 3, W. Wei, F. Zhao, Y. Wang, Kinematic Analysis of a Novel Exoskeleton Finger Rehabilitation Robot for Stroke Patients, Proceedings of 2014 IEEE International Conference on Mechatronics and Automation (2014) 924–929doi:10.1109/ICMA.2014.6885821.
    [CROSSREF]
  5. M. Zhang, B. Lange, C. Y. Chang, A. a. Sawchuk, A. a. Rizzo, Beyond the standard clinical rating scales: Fine-grained assessment of post-stroke motor functionality using wearable inertial sensors, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2012) 6111–6115doi:10.1109/EMBC.2012.6347388.
    [CROSSREF]
  6. M. A. Fikri, S. C. Abdullah, M. H. M. Ramli, Arm Exoskeleton for Rehabilitation Following Stroke by Learning Algorithm Prediction, Procedia Computer Science 42 (2014) 357–364. doi:10.1016/j.procs.2014.11.074. URL http://linkinghub.elsevier.com/retrieve/pii/S1877050914015129
    [CROSSREF]
  7. Y. Ren, H. S. Park, L. Q. Zhang, Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation, 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009 (2009) 761–765doi:10.1109/ICORR.2009.5209482.
    [CROSSREF]
  8. a. Frisoli, E. Sotgiu, C. Procopio, M. Bergamasco, B. Rossi, C. Chisari, Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton, IEEE ... International Conference on Rehabilitation Robotics : [proceedings] 2011 (2011) 5975512. doi:10.1109/icorr.2011.5975512. URL http://ieeexplore.ieee.org/ielx5/5961155/5975334/05975512.pdf?tp={&}arnumber=5975512{&}isnumber=5975334
    [CROSSREF]
  9. L. Zhou, Y. Li, S. Bai, A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation, Robotics and Autonomous Systems 91 (2017) 337–347. doi:10.1016/j.robot.2016.12.012. URL http://dx.doi.org/10.1016/j.robot.2016.12.012
    [CROSSREF]
  10. T.-M.Wu, C.-H. Yang, D.-Z. Chen, Muscle activation levels during upper limb exercise performed using dumbbells and a spring-loaded exoskeleton, Journal of Medical and Biological Engineering 37 (3) (2017) 345–356. doi:10.1007/s40846-017-0226-4. URL https://doi.org/10.1007/s40846-017-0226-4
    [CROSSREF]
  11. J. Hunt, H. Lee, P. Artemiadis, A Novel Shoulder Exoskeleton Robot Using Parallel Actuation and a Passive Slip Interface, Journal of Mechanisms and Robotics 9 (1) (2016) 011002. doi:10.1115/1.4035087. URL http://mechanismsrobotics.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4035087
    [CROSSREF]
  12. L. LIU, Y.-Y. SHI, L. XIE, a Novel Multi-Dof Exoskeleton Robot for Upper Limb Rehabilitation, Journal of Mechanics in Medicine and Biology 16 (08) (2016) 1640023. doi:10.1142/S0219519416400236. URL http://www.worldscientific.com/doi/abs/10.1142/S0219519416400236
    [CROSSREF]
  13. X. Cui, W. Chen, X. Jin, S. K. Agrawal, Design of a 7-dof cable-driven arm exoskeleton (carex-7) and a controller for dexterous motion training or assistance, IEEE/ASME Transactions on Mechatronics 22 (1) (2017) 161–172. doi:10.1109/TMECH.2016.2618888.
    [CROSSREF]
  14. D. M. Baechle, E. D. Wetzel, S. K. Agrawal, MAXFAS: Mechatronic Arm Exoskeleton for Firearm Aim Stabilization, Journal of Mechanisms and Robotics 8 (6) (2016) 061013. doi:10.1115/1.4034015. URL http://mechanismsrobotics.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4034015
    [CROSSREF]
  15. F. Grimm, A.Walter, M. Sp??ler, G. Naros,W. Rosenstiel, A. Gharabaghi, Hybrid neuroprosthesis for the upper limb: Combining brain-controlled neuromuscular stimulation with a multi-joint arm exoskeleton, Frontiers in Neuroscience 10 (AUG) (2016) 1–11. doi:10.3389/fnins.2016.00367.
    [CROSSREF]
  16. J.-S. Botero V., J.-P. Restrepo Z., M.-T. De Ossa J., An angle measurement system of high resolution for the upper limbs using a low-cost servomotor, IOP Conference Series: Materials Science and Engineering 138 (1) (2016) 12006. URL http://stacks.iop.org/1757-899X/138/i=1/a=012006
    [CROSSREF]
  17. J.-S. Botero Valencia, J.-P. Restrepo Zapata, M.-T. De Ossa Jimenez, Design and implementation of a highresolution angle measurement system for the upper limbs using a low-cost servomotor, International Journal on Interactive Design and Manufacturing (IJIDeM)doi:10.1007/s12008-016-0346-z. URL http://link.springer.com/10.1007/s12008-016-0346-z
    [CROSSREF]
  18. F. Kinesiology, Length dependence of active force production in skeletal muscle, Applied Physiology 86 (5) (1999) 1445–1457. URL http://jap.physiology.org/content/86/5/1445
  19. I. Galt´es, X. Jordana, M. Cos, A. Malgosa, J. Manyosa, Biomechanical model of pronation efficiency: New insight into skeletal adaptation of the hominoid upper limb, American Journal of Physical Anthropology 135 (3) (2008) 293–300. doi:10.1002/ajpa.20743. URL http:https://dx.doi.org/10.1002/ajpa.20743
    [CROSSREF]
  20. P. Ibanez-Gimeno, I. Galtes, X. Jordana, A. Malgosa, J. Manyosa, Biomechanics of forearm rotation: Force and efficiency of pronator teres, PLoS ONE 9 (2). doi:10.1371/journal.pone.0090319. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938685/
    [CROSSREF]
  21. L. W. O’Sullivan, T. J. Gallwey, Upper-limb surface electro-myography at maximum supination and pronation torques: The effect of elbow and forearm angle, Journal of Electromyography and Kinesiology 12 (4) (2002) 275–285. doi:10.1016/S1050-6411(02)00014-7.
    [CROSSREF]
  22. C. Paraschiv, P. Paraschiv, R. Cimpoeu, Determination of the Elbow Joint Resulting Torque and Obtaining Customized Numerical Results, Procedia - Social and Behavioral Sciences 117 (2014) 522–528. doi:10.1016/j.sbspro.2014.02.256. URL http://linkinghub.elsevier.com/retrieve/pii/S1877042814017868
    [CROSSREF]
  23. L. Zhou, Y. Li, S. Bai, A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation, Robotics and Autonomous Systemsdoi:10.1016/j.robot.2016.12.012. URL http://linkinghub.elsevier.com/retrieve/pii/S0921889016301877
  24. J. Rosen, J. C. Perry, N. Manning, S. Burns, B. Hannaford, The human arm kinematics and dynamics during daily activities - Toward a 7 DOF upper limb powered exoskeleton, 2005 International Conference on Advanced Robotics, ICAR ’05, Proceedings 2005 (July) (2005) 532–539. doi:10.1109/ICAR.2005.1507460. URL http://ieeexplore.ieee.org/document/1507460/
    [CROSSREF]
  25. BioDigital InC, BioDigital (2016). URL https://human.biodigital.com/index.html
    [CROSSREF]
  26. Robotis, Dynamixel MX 64 (2016). URL http://support.robotis.com/en/product/actuator/dynamixel/mx{_}series/mx-64at{_}ar.htm

EXTRA FILES

COMMENTS