DESIGNING AND PROTOTYPING A SENSORS HEAD FOR TEST AND CERTIFICATION OF UAV COMPONENTS

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

24
Reader(s)
35
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 10 , ISSUE 3 (September 2017) > List of articles

DESIGNING AND PROTOTYPING A SENSORS HEAD FOR TEST AND CERTIFICATION OF UAV COMPONENTS

Francesco Adamo * / Gregorio Andria / Attilio Di Nisio / Carlo Guarnieri Calò Carducci / Aimé Lay-Ekuakille / Giuseppe Mattencini / Maurizio Spadavecchia

Keywords : UAVs, propulsion, sensors, electric motors, test, certification.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 10, Issue 3, Pages 646-672, DOI: https://doi.org/10.21307/ijssis-2017-228

License : (CC BY-NC-ND 4.0)

Received Date : 22-June-2017 / Accepted: 22-July-2017 / Published Online: 01-September-2017

ARTICLE

ABSTRACT

The project proposed in this paper deals with the design and the development of an embedded test system able to characterize both electrical and mechanical performances of UAVs (Unmanned Aerial Vehicles) propulsion subsystems (motor and propeller). The measurement data that can be collected are of great interest for professional applications, as well as for amateur makers. Starting from the measures acquired by the presented system, it will be possible to deliver certificates that guarantee the customer that the performances obtained by the drone are compliant to what declared by the seller.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. S. N. Ghazbi, Y. Aghli, M. Alimohammadi, A. A. Akbari, “Quadrotors Unmanned Aerial Vehicles: A Review”, International Journal on Smart Sensing & Intelligent Systems, Vol. 9, no. 1, March 2016, pp. 309-333.
  2. G. Pajares, “Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs)”, Photogrammetric Eng. & Remote Sensing, vol. 81, 2015, pp. 281-329.
  3. A. Rango et al., “Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management”, J. Appl. Remote Sensing, vol. 3, 2009, pp. 033542-033542-15.
  4. G. J. Grenzdörffer, A. Engel, B. Teichert, “The photogrammetric potential of low-cost UAVs in forestry and agriculture”, in The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, vol. 31, 2008, pp. 1207-1214.
  5. A.E. Holton, S. Lawson, C. Love, “Unmanned Aerial Vehicles: Opportunities, barriers, and the future of drone journalism”, J. Journalism Practice, vol. 9, 2015, pp. 634-650.
  6. Y. Li, C. Chen, W. Chen, “Research on Longitudinal Control Algorithm for Flying Wing UAV Based on LQR Technology, International Journal on Smart Sensing & Intelligent Systems, Vol. 6, no. 5, December 2013, pp. 2155-2181.
  7. S. Kyristsis, A. Antonopoulos, T. Chanialakis, E. Stefanakis, C. Linardos, A. Tripolitsiotis, P. Partsinevelos, “Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm”, Sensors, vol. 16, no. 11: 1844, 2016.
  8. G. Yu, H. Song. J. Gao, “Unmanned Aerial Vehicle Path Planning Based on TLBO Algorithm”, International Journal on Smart Sensing & Intelligent Systems, Vol. 7, no. 3, December 2014, pp. 1310-1325
  9. J. Kang, Y. Kwon, K. Park, “Cooperative Spatial Retreat for Resilient Drone Networks”, Sensors, vol. 17, no. 5:1018, 2017.
  10. L. Sørensen, L. Jacobsen, J. Hansen, “Low Cost and Flexible UAV Deployment of Sensors”, Sensors, vol. 17, no. 1:154, 2017.
  11. E. M. Kwon, K. H. Yu, M. J. Yoon, G. Y. Jeong, G.Y, “Design considerations and modeling of a small and low altitude solar powered UAV”, in Proceedings of 11th International Conference on Control, Automation and Systems, Gyeonggi-do, South Korea, 2011, pp. 1085-1088.
  12. S. Sotheara, K. Aso, N. Aomi, S. Shimamoto, “Effective data gathering and energy efficient communication protocol in Wireless Sensor Networks employing UAV”, in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 6-9 April 2014, pp. 2342-2347.
  13. A. Di Nisio, T. Di Noia, C. Guarnieri Calò Carducci, M. Spadavecchia, “High dynamic range power consumption measurement in microcontroller-based applications”, IEEE Trans. Instr. Meas. no. 65, 2016, pp. 1968-1976.
  14. G.P. Kladis, et al. “Energy conservation based fuzzy tracking for unmanned aerial vehicle missions under a priori known wind information”, Engineering Applications of Artificial Intelligence, vol. 24, 2011, pp. 278-294.
  15. M. Jiang, T. Aoyama, T. Takaki, I. Ishii, “Pixel-Level and Robust Vibration Source Sensing in High-Frame-Rate Video Analysis”, Sensors vol. 16, no. 11:1842, 2016.
  16. L. E. Mavromatidis et al., “First experiments for the diagnosis and thermophysical sampling using impulse IR thermography from Unmanned Aerial Vehicle (UAV)”, in Proceedings of QIRT Conf., Bordeaux, France, July 2014, pp. 1-8.
  17. M. Dalsass et al., “Correlation between the generated string powers of a photovoltaic: Power plant and module defects detected by aerial thermography”, in Proceedings of IEEE Photovoltaic Specialists Conference (PVSC), Portland, OR, 5-10 June 2016, pp. 3113-3118.
  18. G. Andria, A.M.L Lanzolla, F. Piccininni, G.S. Virk, G.S., “Design and characterization of solar-assisted heating plant in domestic houses”, IEEE Trans. Instr. Meas., vol. 57, 2008, pp. 2711-2719.
  19. F. Attivissimo, A. Di Nisio, C. Guarnieri Calò Carducci, M. Spadavecchia, “Fast thermal characterization of thermoelectric modules using infrared camera”, IEEE Trans. Instr. Meas., vol. 66, 2017, pp. 305-314.
  20. H. Cruz, M. Eckert, J. Meneses, J. Martínez, “Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs)”, Sensors, vol. 16, no. 6:893, 2016.
  21. L. Evans, T. Jones, K. Pang, S. Saimin, B. Goossens, “Spatial Ecology of Estuarine Crocodile (Crocodylus porosus) Nesting in a Fragmented Landscape”, Sensors, vol. 16, no. 9: 1527, 2016.
  22. F. Adamo, F. Attivissimo, A. Di Nisio, M. Savino, “A low-cost inspection system for online defects assessment in satin glass”, Measurement: Journal of the International Measurement Confederation, vol. 42, 2009, pp. 1304-1311.
  23. L. Hongguang, D. Wenrui, W. Yufeng, “Three-Step Registration and Multi-Thread Processing Based Image Mosaic for Unmanned Aerial Vehicle Applications”, International Journal on Smart Sensing & Intelligent Systems, Vol. 9, no. 2, June 2016, pp. 1090-1109
  24. F. Adamo, F. Attivissimo, A. Di Nisio,M. Savino, “An online defects inspection system for satin glass based on machine vision”, in Proceedings of IEEE Intrumentation and Measurement Technology Conference, I2MTC, Singapore, 5-7 May 2009, pp. 288-293.
  25. K. Weber et al., “The use of an octocopter UAV for the determination of air pollutants–a case study of the traffic induced pollution plume around a river bridge in Duesseldorf, Germany”, International Journal of Environmental Science, vol. 2, 2017, pp 63-68.
  26. Y. Lu et al., “A UAV-mounted whole cell biosensor system for environmental monitoring applications”, IEEE transactions on nanobioscience, vol. 14, 2015, pp. 811-817.
  27. G. Andria, G. Cavone, V. Di Lecce, A.M.L. Lanzolla, “Model characterization in measurements of environmental pollutants via data correlation of sensor outputs”, IEEE Trans. Instr. Meas., vol. 54, 2005, pp. 1061-1066.
  28. V. Pelillo, L. Piper, A. Lay-Ekuakille, A. Lanzolla, G. Andria, R. Morello, “Geostatistical approach for validating contaminated soil measurements”, Measurement: Journal of the International Measurement Confederation, vol. 47, 2014, pp. 1016-1023.
  29. F. Giordano, G. Mattei, C. Parente, F. Peluso, R. Santamaria, “Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters”, Sensors, vol. 16, no. 1:41, 2016.
  30. F. Adamo, F. Attivissimo, C. Guarnieri Calò Carducci, A.M.L. Lanzolla, A.M.L, “A smart sensor network for sea water quality monitoring”, IEEE Sensors Journal, vol. 15, 2015, pp. 2514-2522.
  31. I. Borra-Serrano, J. M. Peña, J. Torres-Sánchez, F. J. Mesas-Carrascosa, F. López-Granados, “Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping”, Sensors, vol. 15, 2015, pp. 19688-19708.
  32. G. Palma et al., “Novel double step approach for optical sensing via microsphere WGM resonance”, Optics Express, vol. 24, 2016, pp. 26956-26971.
  33. S.L. Cundill, H.M.A van der Werff, M. van der Meijde, “Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra”, Sensors, vol. 15, 2015, pp. 6221-6240.
  34. J. Wojtas, A. Gluszek, A Hudzikowski, F.K. Tittel, “Mid-Infrared Trace Gas Sensor Technology Based on Intracavity Quartz-Enhanced Photoacoustic Spectroscopy”, Sensors, vol. 17:513, 2017.
  35. G. Palma, et al., “Modeling of whispering gallery modes for rare earth spectroscopic characterization”, IEEE Photonics Technology Letters, vol. 27, 2015, pp. 1861-1863.
  36. G. Palma, et al. “Design of praseodymium-doped chalcogenide micro-disk emitting at 4.7 μm”, Optics Express, vol. 25, 2017, pp. 7014-7030.
  37. S. Naumann, A. Siegmund, R. Ditter, M. Haspel, M. Jahn, and A. Siegmund. "Remote sensing in school–Theoretical concept and practical implementation" E-Learning Tools, Techniques and Applications, edited by G König & H Lehmann (ISPRS, Potsdam), 2009.
  38. M. Jahn, M. Haspel, and A. Siegmund, "Using remote sensing data in the context of education for sustainable development," in Proc. of 30th EARSeL Symposium of Remote Sensing for Science, Educafion, and Natural and Cultural Heritage, 2010, pp. 731-738.
  39. G. Andria, A. Baccigalupi, M. Borsic, P. Carbone, P. Daponte, C. De Capua, A. Ferrero, D. Grimaldi, N. Locci, A. M. L. Lanzolla, D. Macii, C. Muscas, L. Peretto, D. Petri, S. Rapuano, M. Riccio, S. Salicone, F. Stefan, “Remote Didactic Laboratory “G. Savastano: the Italian Experience for the E-learning at the Technical Universities in the Field of the Electrical and Electronics Measurements, Architecture and Optimization of the Communication Performance Based on Thin Client Technology”, IEEE Transactions on Instrumentation and Measurement, ISSN:0018-9456, vol. 56, no. 4, August 2007, pp. 1124-1134.
  40. G. Andria, A. Baccigalupi, M. Borsic, P. Carbone, P. Daponte, C. De Capua, A. Ferrero, D. Grimaldi, N. Locci, A.M. L. Lanzolla, D. Macii, C. Muscas, L. Peretto, D. Petri, S. Rapuano, M. Riccio, S. Salicone, F. Stefan, “Remote Didactic Laboratory “G. Savastano: the Italian Experience for the E-learning at the Technical Universities in the Field of the Electrical and Electronics Measurements, Overview on Didactic Experiments”, IEEE Transactions on Instrumentation and Measurement, ISSN:0018-9456, vol. 56, no. 4, August 2007, pp. 1135-1147.
  41. T. Mutlu, C. Hajiyev, “Flight tests, data collection, system identification, performance analysis of multicopter vehicle”, in Proceedings of the 2014 6th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Bucharest, Romania, October 2014, pp. 19-26.
  42. L. Derafa, T. Madani, A. Benallegue, “Dynamic modelling and experimental identification of four rotors helicopter parameters," 2006 IEEE International Conference on Industrial Technology, Mumbai, 2006, pp. 1834-1839.
  43. N. V. Hoffer, C. Coopmans, A.M. Jensen, Y. Chen, “A Survey and Categorization of Small Low-Cost Unmanned Aerial Vehicle System Identification”, J. Intell. Robotics Syst., vol. 74, 23-25 October 2014, pp. 129-145.
  44. N.V. Hoffer, C. Coopmans, A.M. Jensen, Y. Chen, R.R. Fullmer, “Small low-cost unmanned aerial vehicle system identification: Brief sensor survey and data quality, consistency checking, and reconstruction”, in Proceedings of International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, 2014, pp. 477-482.
  45. P. López-Rodríguez, D. Escot-Bocanegra, D. Poyatos-Martínez, F. Weinmann, “Comparison of Metal-Backed Free-Space and Open-Ended Coaxial Probe Techniques for the Dielectric Characterization of Aeronautical Composites”, Sensors, vol. 16, no. 7:967, 2016.
  46. J. Gryzagoridis, D. Findeis, “Simultaneous shearographic and thermographic NDT of aerospace materials”, Insight - Non-Destructive Testing and Condition Monitoring, vol. 48, 2006, pp. 294-297.
  47. G. Andria, A. Di Nisio, V.L. Scarano, V.L., M. Spadavecchia, M. Bregoli, M. Franceschi, M., N. Tavernini, “Accelerated life tests of a new optocoupler for aerospace application”, in Proceedings IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014, Benevemto, Italy, 29-30 May 2014, pp. 510-514.
  48. Ø. Magnussen, G. Hovland, M. Ottestad, “Multicopter UAV design optimization”, in Proceedings 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy, 2014, pp. 1-6.
  49. Ø. Magnussen, M. Ottestad, G. Hovland, “Multicopter design optimization and validation”, Modeling, Identification and Control, vol. 36, 2015, pp. 67–79.
  50. J.M. Winslow, V. Hrishikeshavan, I. Chopra, “Design Methodology for Small Scale Unmanned Quadrotors”, in Proceedings 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 9 - 13 January 2017, pp. 1-15.
  51. W.A. Anemmat, et al., “Aerodynamic Design, Analysis and Testing of Propellers for Small Unmanned Aerial Vehicles”, In Proceedings 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 9-13 January 2017, pp. 1-12.
  52. C.R. Russel, et al., “Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles”, in Proceedings of AHS 72nd Annual Forum, West Palm Beach, FL, 16-19 May 2016, pp. 1-20.
  53. Dà-Jiāng Innovations Science and Technology Co. Ltd (DJI). Flame Wheel 550 (F550) specifications. Available online: https://www.dji.com/flame-wheel-arf/spec (accessed on 10 May 2017).
  54. National Instruments Corp., “myRIO-1900 User Guide and Specifications”, Available online: http://www.ni.com/pdf/manuals/376047a.pdf (accessed on 10 May 2017).
  55. Toellner, TOE7621-20 4-Quadrant Power Supply specifications. Available online: http://www.toellner.de/html/img/pool/EN_7621.pdf (accessed on 10 May 2017).
  56. I. Muller, R. M. de Brito, C. E. Pereira, V. Brusamarello, “Load cells in force sensing analysis -- theory and a novel application”, IEEE Instrumentation & Measurement Magazine, vol. 13, 2010, pp. 15-19.
  57. W. K. Lee, H. Yoon, C. Han, K. M. Joo, K. S. Park, “Physiological Signal Monitoring Bed for Infants Based on Load-Cell Sensors”, Sensors, vol. 16, no. 3:409, 2016.
  58. G. Andria, F. Attivissimo, N. Giaquinto, A.M.L. Lanzolla, L. Quagliarella, N. Sasanelli, “Functional evaluation of handgrip signals for Parkinsonian patients”, IEEE Trans. Instr. Meas., vol. 55, 2006, pp. 1467-1473.
  59. A. Blakeborough, D. Clément, M.S. Williams, N. Woodward, “Novel load cell for measuring axial force, shear force, and bending movement in large-scale structural experiments”, Experimental Mechanics, vol. 42, 2002, pp. 115–122.
  60. Avia Semiconductor. HX711 - 24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales. Available online: https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_english.pdf (accessed on 10 May 2017).
  61. Fairchild Semiconductor, QRB1134 - Phototransistor Reflective Object Sensors. Available online: http://courses.cs.washington.edu/courses/csep567/10wi/labs/QRB1134.pdf (accessed on 10 May 2017).
  62. Sharp Semiconductor, GL380/GL381 - High Output, φ 3mm Resin Mold Type Infrared Emitting Diode. Available online: http://pdf.datasheetcatalog.com/datasheet/Sharp/mXvqxzt.pdf (accessed on 10 May 2017).
  63. Sharp Semiconductor, IS471F - OPIC Light Detector with Built-in Signal Processing Circuit for Light Modulation System. Available online: http://courses.csail.mit.edu/6.141/spring2009/pub/labs/Grasping/docs/Breakbeam-Sensor-Sharp-IS471F.pdf (accessed on 10 May 2017).
  64. Texas Instruments, INA139/169 - High-Side Measurement Current Shunt Monitor. Available online: https://cdn.sparkfun.com/datasheets/Sensors/Current/ina169.pdf (accessed on 10 May 2017).
  65. Texas Instruments. ADS1015 - Ultra-Small, Low-Power, I2C-Compatible, 3.3-kSPS, 12-Bit ADCs With Internal Reference, Oscillator, and Programmable Comparator. Available online: http://www.ti.com.cn/cn/lit/ds/symlink/ads1015.pdf (accessed on 10 May 2017).
  66. F. Attivissimo, A. Cataldo, L. Fabbiano, N. Giaquinto, “Systematic errors and measurement uncertainty: An experimental approach”, Measurement: Journal of the International Measurement Confederation, vol. 44, 2011, pp. 1781-1789.
  67. F. Attivissimo, N. Giaquinto, M. Savino, “Worst-case uncertainty measurement in ADC-based instruments”, Computer Standards and Interfaces, vol. 29, 2009, pp. 5-10.
  68. Dà-Jiāng Innovations Science and Technology Co., Ltd (DJI). 2212 – 920 KV - Brushless Motor for Quadcopter/Multirotor/Drone. Available online: https://www.robomart.com/account/product2pdf?productid=1081 (accessed on 10 May 2017).
  69. Dà-Jiāng Innovations Science and Technology Co., Ltd (DJI). E300 - Optoisolated Electronic Speed Control. Available online: http://www.dji.com/e300/spec (accessed on 10 May 2017).
  70. G. Andria, A. D’orazio, A. Lay Ekuakille, M. Moretti, P. Pieri, F. Tralli, M. Tropeano, “Accuracy Assessment in Photo Interpretation of Remote Sensing ERS-2/SAR Images”, 17th IEEE - IMTC2000, Baltimore, USA, 1-4 May 2000, pp. 392-394.
  71. G. Andria, A. D’orazio, A. Lay Ekuakille, M. Notarnicola, “Modelling Study in Remote Sensing of Air Pollution Measured Data”, 17th IEEE - IMTC2000, Baltimore, USA, 1-4 May 2000, pp. 782-785.

EXTRA FILES

COMMENTS