SENSOR TECHNOLOGY AT SUBMILLIMETER WAVELENGTHS FOR SPACE APPLICATIONS

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

4
Reader(s)
19
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 1 , ISSUE 1 (March 2008) > List of articles

SENSOR TECHNOLOGY AT SUBMILLIMETER WAVELENGTHS FOR SPACE APPLICATIONS

Goutam Chattopadhyay *

Keywords : Submillimeter, terahertz, sensors, mixers, detectors, space applications.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 1, Issue 1, Pages 1-20, DOI: https://doi.org/10.21307/ijssis-2017-275

License : (CC BY-NC-ND 4.0)

Published Online: 13-December-2017

ARTICLE

ABSTRACT

Our universe is most luminous at far-infrared and submillimeter wavelengths (100 GHz – 10 THz) after the Cosmic Microwave Background (CMB) radiation. This region of the electromagnetic spectrum provides critical tracers for the study of a wide range of astrophysical and planetary phenomena. This spectral range contains information on the origin of the planets, stars, galaxies, and clusters; the geometry and matter/energy content of the Universe, atmospheric constituents and dynamics of the planets and comets and tracers for global monitoring and the ultimate health of the Earth. Sensors at far-infrared and submillimeter wavelengths provide unprecedented sensitivity for astrophysical, planetary, and earth observing instruments. Very often, for a spaced based platform where the instruments are not limited by atmospheric losses and absorption, the overall instrument sensitivity is dictated by the sensitivity of the sensors themselves. Moreover, some of the cryogenic sensors at submillimeter wavelengths provide almost quantum-limited sensitivity. This paper provides an overview of the submillimeter-wave sensors and their performance and capabilities for space applications.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] T. G. Phillips and J. Keene, “Submillimeter Astronomy”, Proc. IEEE, vol. 80, pp 1662-1678, November 1992.
[2] R. R. Cladwell and M Kamionkowski, “Echoes from the Big Bang,” Scientific American, pp. 38-43, 2001.
[3] P.H. Siegel and R.J. Dengler, “Terahertz Heterodyne Imaging: Instruments,” Int. Journal of Infrared and Millimeter Waves, v.27, no. 5, pp. 631-656, May 2006.
[4] K. B. Cooper, R. J. Dengler, G. Chattopadhyay, E. Schlecht, J. Gill, A. Skalare, I. Mehdi, and P. H. Siegel, “A High Resolution Imaging Radar at 580 GHz,” To appear in the IEEE Microwave and Wireless Components Letters, December 2007.
[5] P. H. Siegel, “Terahertz Technology in Biology and Medicine,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 10, pp. 2438-2447, October 2004.
[6] M. Tonouchi, “Cutting Edge THz Technology,” Nature Photonics, vol. 1, pp. 97-105, February 2007.
[7] P. H. Siegel, “Terahertz Technology,” IEEE Trans. on Microwave Theory and Tech., vol. 50, no. 3, pp. 910-928, March 2002.
[8] G. L. Pilbratt, “The Herschel mission, scientific objectives, and this meeting,” Proc. Eur. Space Agency Symp., Dec. 2000, ESA SP-460, pp. 13–20.
[9] R. L. Brown, “Technical specification of the millimeter array,” Proc. SPIE–Int. Soc. Opt. Eng., no. 3357, pp. 231–441, 1998.
[10] E. F. Erickson and J. A. Davidson, “SOFIA: The Future of Airborne Astronomy,” Proc. Airborne Astronomy Symp. on the Galactic Ecosystem: From Gas to Stars to Dust, eds., M. R. Haas, J. A. Davidson, and E. F. Erickson, San Francisco, April 1995.
[11] D. J. Fixsen, C. L. Bennett, and J. C. Mather, “COBE Far Infrared Absolute Spectrophotometer Observations of Galactic Lines,” Astrophysical Journal, 526: 207-214, 1999 November 20.
[12] G. Melnick et al., “The Submillimeter Wave Astronomy Satellite: Science Objectives and Instrument Description,” Astrophys. J. Lett., pt. 2, vol. 539, no. 2, pp. L77–L85, August 2000.
[13] W. Wild, et al., "ESPRIT: A Space Interferometer Concept for the Farinfrared", Proc. SPIE, 6255, p. 62651Z, 2006.
[14] Space Science Enterprise 200: Strategic Plan (http://spacescience.nasa.gov/roadmap/pdffiles/2000/2-3.pdf).
[15] G. Schwehm and R. Schulz, “The International Rosetta Mission,” Ehrenfreund et al., eds: Laboratory Astrophysics and Space Research, 1999, pp. 537–546.
[16] S. Gulkis, et. al., “MIRO: Microwave Instrument for Rosetta Orbiter,” Space Science Reviews, vol. 128, no. 1-4, pp. 561-597, Feb. 2007.
[17] M. C. Gaidis, “Space-Based Applications of Far Infrared Systems,” Eighth Intl. Terahertz Electron. Conf., Darmstadt, Germany, Sept. 28–29, 2000, pp. 125–128.
[18] Earth Science Enterprise Strategic Plan, “Exploring Our Home Planet,” NASA Headquarters, November 2000 (www.earth.nasa.gov).
[19] S. Solomon, Stratospheric Ozone Depletion: A Review of Concepts and History,” Reviews of Geophysics, vol. 37, pp. 275-316, 1999.
[20] World Meteorological Organization, “Tropospheric O zone and Related Processes,” Chapter 8, Scientific Assessment of Ozone Depletion: 1998, Rep. 44, Geneva, Switzerland, 1998.
[21] A. M. Thomson, “The Oxidizing Capacity of the Earth’s Atmosphere: Probable Past and Future Changes,” Science, vol. 256, pp. 1157-1165, 1992.
[22] M. A. Janssen, editor, Atmospheric Remote Sensing by Microwave Radiometry, John Wiley, 1993.
[23] J. W. Waters, “Submillimeter-Wavelength Heterodyne Spectroscopy and Remote Sensing of the Upper Atmosphere,” Proc. IEEE, vol. 80, no. 11, pp. 1679-1701, November 1992.
[24] J. W. Waters, et. al., “The UARS and EOS Microwave Limb Sounder Experiments,” Journal of Atmospheric Science, vol. 56, pp. 194-218, 1999.
[25] D.T. Petkie, F.C. DeLucia, C. Casto, P. Helminger, E.L. Jacobs, S.K. Moyer, S. Murrill, C. Halford, S. Griffin, and C. Franck, “Active and Passive Millimeter and Submillimeter-Wave Imaging,” Proc. SPIE, vol. 5989, pp. 598918-1 to 598918-8, 2005.
[26] J.C. Dickinson, T.M. Goyette, A.J. Gatesman, C.S. Joseph, Z.G. Root, R.H. Giles, J. Waldman, and W.E. Nixon, “Terahertz Imaging of Subjects with Concealed Weapons,” Proc. SPIE, vol. 6212, pp. 62120Q-1 to 62120Q-12, 2006.
[27] M.C. Kemp, P.F. Taday, B.E. Cole, J.A. Cluff, A.J. Fitzgerald, and W.R. Tribe, “Security Applications of Terahertz Technology,” Proc. SPIE, vol. 5070, pp. 44-52, 2003.
[28] G. Chattopadhyay, K. B. Cooper, R. J. Dengler, E. Schlecht, A. Skalare, I. Mehdi, and P. H. Siegel, “A 675 GHz FMCW Radar with Sub-Centimeter Range Resolution,” To appear in the Proceedings of the Eighteenth International Symposium on Space Terahertz Technology, Pasadena, CA, USA, March 2007.
[29] R. J. Dengler, K. B. Cooper, G. Chattopadhyay, I. Mehdi, E. Schlecht, A. Skalare, C. Chen, and P. H. Siegel, “600 GHz Imaging Radar with 2 cm Range Resolution,” 2007 IEEE MTT-S Intl. Microwave Symp. Digest, Honolulu, Hawaii, June 2007, pp. 1371-1374.
[30] N. C. Luhmann and W. A. Peebles, “Instrumentation for Magnetically Confined Fusion Plasma Diagnostics,” Rev. Sci. Instrum., vol. 55, no. 3, pp. 279-331, March 1984.
[31] J. Zmuidzinas and P. L. Richards, “Superconducting Detectors and Mixers for Millimeter and Submillimeter Astrophysics,” Proc. IEEE, vol. 92, no. 10, pp. 1597-1616, October 2004.
[32] J. Zmuidzinas, “Thermal Noise and Correlations in Photon Detection,” Appl. Optics, col. 42, no. 25, pp. 4989-5008, September 2003.
[33] J. Zmuidzinas, J. W. Kooi, J. Kawamura, G. Chattopadhyay, J. A. Stern, B. Bumble, and H. G. LeDuc, “Development of SIS Mixers for 1 THz,” Proc. SPIE, T. G. Phillips, ed., vol. 3357, Kona, Hawaii, March 1998, pp. 53-61.
[34] G. Chattopadhyay, D. Miller, H. G. LeDuc, and J. Zmuidzinas, “A Dual-Polarized Quasi-Optical SIS Mixer at 550 GHz,” IEEE Trans. Microwave Theory and Tech., vol. 48, no. 10, pp. 1680-1686, October 2000.
[35] E. M. Gershenzon, G. N. Gol’tsman, I. G. Gogidze, Y. P. Gusev, A. I. Elant’ev, B. S. Karasik, and A. D. Semenov, “Millimeter and Submillimeter Range Mixer Based on Electronic Heating of Superconducting Films in Resistive State,” Sov. Phys. Superconductivity, vo1. 3, 1582, 1990.
[36] M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, and P. H. Siegel, “A 2.5 THz Receiver Front End for Space Borne Applications,” IEEE Trans. Microwave Theory and Tech., vol. 48, no. 4, pp. 733-739, April 2000.
[37] J. L. Hesler, W. R. Hall, T. W. Crowe, R. M. Weikle, B. S. Deaver, R. F. Bradley, and S-K Pan, “Fixed-Tuned Submillimeter Wavelength Waveguide Mixers Using Planar Schottky-Barrier Diodes,” IEEE Trans. Microwave Theory and Tech., vol. 45, no. 5, pp. 653-658, May 1997.
[38] K. D. Irwin and G. C. Hilton, "Transition-edge sensors," Top. Appl. Phys., vol. 99, pp. 63-149, 2005.
[39] M. Tinkham, Introduction to Superconductivity, 2nd ed. New York: McGraw-Hill, 1996.
[40] E. Burstein, D. N. Langenberg, and B. N. Taylor, “Superconductors as quantum detectors for microwave and sub-millimeter-wave radiation,” Phys. Rev. Lett., vol. 6, no. 3, pp. 92–94, February 1961.
[41] P. Day, H. LeDuc, B. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature, vol. 425, no. 6960, pp. 817–821, 2003.
[42] D. Golubev and L. Kuzmin, “Nonequilibrium theory of a hot-electron bolometer with normal metal–insulator–superconductor tunnel junction,” J. Appl. Phys., vol. 89, no. 11, pp. 6464–6472, 2001.

EXTRA FILES

COMMENTS