MEASURING FLOW PARAMETERS OF PARTICULATE AND POWDERY SOLIDS IN INDUSTRIAL TRANSPORTATION PROCESSES

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

9
Reader(s)
43
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 1 , ISSUE 2 (June 2008) > List of articles

MEASURING FLOW PARAMETERS OF PARTICULATE AND POWDERY SOLIDS IN INDUSTRIAL TRANSPORTATION PROCESSES

A. Fuchs * / H. Zangl

Keywords : gas-solid flows, material conveying, capacitive sensing

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 1, Issue 2, Pages 388-402, DOI: https://doi.org/10.21307/ijssis-2017-296

License : (CC BY-NC-ND 4.0)

Published Online: 13-December-2017

ARTICLE

ABSTRACT

This paper provides an overview of existing technologies to measure flow parameters, such as material velocity and material concentration, in industrial transportation processes of particulate and powdery solids with a focus on pneumatic conveying. Restrictions, advantages and drawbacks of state of the art measurement principles are discussed. We show that capacitance-based sensing with suitable electrode topology allows for non-invasive, low-cost determination of flow parameters. Two industrial applications for material transportation - by means of pneumatic conveying and of screw conveyors - are presented.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] E. Ehrhardt, M. Montagne, H. Berthiaux, B. Dalloz-Dubrujeaud, C. Gatumel, “Assessing the Homogeneity of Powder Mixtures by On-Line Electrical Capacitance”, Chemical Engineering and Processing, vol. 44, 2005, pp. 303-313.
[2] A. Fuchs, “Flow Parameter Determination of Powdery and Granular Material in Pneumatic Conveying Processes”, Dissertation, Graz University of Technology, Austria, 2006.
[3] W. Siegel, „Pneumatische Förderung“, Vogel Buchverlag, Würzburg, 1991.
[4] Y. Yan, “Mass Flow Measurement of Bulk Solids in Pneumatic Pipelines”, Measurement Science and Technology, vol. 7, 1996, pp. 1687-1706.
[5] P. Wypych, “Dilute-Phase Pneumatic Conveying Problems and Solutions”, in: Handbook of Conveying and Handling of Particulate Solids, Elsevier Science, A. Levy, H. Kalman (Eds.), Amsterdam, 2001, pp. 303-318.
[6] M. Massoudi, K. Rajagopal, T. Phuoc, “On the Fully Developed Flow of a Dense Particulate Mixture in a Pipe”, Powder Technology, vol. 104, no. 3, 1999, pp. 258- 268.
[7] M. Machida, “Monitoring Particle Flows by Displacement Current Sensing”, Proc. of the 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, UK, 1999, pp. 560-562.
[8] M. Nifuku, H. Katoh, “A Study on the Static Electrification of Powders During Pneumatic Transportation and the Ignition of Dust Cloud”, Powder Technology, vol. 135/136, 2003, pp. 234-242.
[9] M. Sommerfeld, “Analysis of Collision Effects for Turbulent Gas-Particle Flow in a Horizontal Channel: Part I. Particle Transport”, International Journal of Mulitphase Flow, vol. 29, 2003, pp. 675-699.
[10] M. Sanderson, H. Yeung, “Guidelines for the Use of Ultrasonic Non-Invasive Metering Techniques”, Flow Measurement and Instrumentation, vol. 13, 2002, pp. 125-142.
[11] M. Beck, A. Plaskowski, “Cross Correlation Flowmeters - Their Design and Application”, Adam Hilger, IOP Publishing Ltd, Bristol, 1987.
[12] J. Coulthard, “Ultrasonic Cross-Correlation Flowmeters”, Proc. of the IEE Colloquium on Ultrasound in the Process Industry, 1993, pp. 7/1-7/3.
[13] Y. Ichikura, K. Watanabe, “Measurement of Particle Flow by Optical Systems”, Proc. of the 21th International Conference on Industrial Electronics, Control and Instrumentation, Orlando, FL, USA, vol. 2, 1995, pp. 1173-1178.
[14] F. Shao, Z. Lu, E. Wu, S. Wang, “Study and Industrial Evaluation of Mass Flow Measurement of Pulverized Coal for Iron-Making Production”, Flow Measurement and Instrumentation, vol. 11, 2000, pp. 159-163.
[15] R. Baar, W. Riess, “Two Phase Flow Velocimetry Measurements by Conductive- Correlative Method”, Flow Measurement and Instrumentation, vol. 8, nr. 1, 1997, pp. 1-6.
[16] J. Ma, Y. Yan, “Design and Evaluation of Electrostatic Sensors for the Measurement of Velocity of Pneumatically Conveyed Solids”, Flow Measurement and Instrumentation, vol. 11, 2000, pp. 195-204.
[17] L. Xu, G. de Graaf, R. Wolffenbuttel, “DSP Cross-Correlator for Use in a Thermal Flow Meter”, Proc. of the IEEE Instrumentation and Measurement Technology Conference, Brussels, Belgium, 1996, pp. 185-194.
[18] A. Godbole, B. Kosasih, A. Fuchs, “Particle Trajectories in Dilute Phase Pneumatic Conveying”, Particulate Science and Technology, vol. 25, nr. 4, 2007, pp. 381-385.
[19] D. Hrach, A. Fuchs, H. Zangl, “Capacitive Flowmeter for Gas-Solids Flow Applications Exploiting Spatial Filtering”, Proc. of the IEEE Sensors Applications Symposium, Atlanta, Georgia, USA, 2008, pp. 26-30.
[20] M. Ostendorf, J. Schwedes, “Measurement of the Dynamic Behavior of Bulk Solids Using Optical Flow Analysis”, in: Handbook of Conveying and Handling of Particulate Solids, Elsevier Science, A. Levy, H. Kalman (Eds.), Amsterdam, 2001, pp. 851-860.
[21] T. Schlüter, W. Merzkirch, “PIV Measurement of the Time-Averaged Flow Velocity Downstream of Flow Conditioners in a Pipeline”, Flow Measurement and Instrumentation, vol. 7, nr. 3/4, 1996, pp. 173-179.
[22] M. Dhoriyani, K. Jonnalagadda, R. Kandikatla, K. Kesava Rao, “Silo Music: Sound Emission During the Flow of Granular Materials Through Tubes”, Powder Technology, vol. 167, 2006, pp. 55-71.
[23] D. Giddings, B. Azzopardi, A. Aroussi, S. Pickering, “Absolute Measurement of Pneumatically Conveyed Powder Using a Single Long Throat Venturi”, Powder Technology, vol. 172, nr. 3, 2007, pp. 149-156.
[24] A. Nugroho, Z. Wu, “Microwave Imaging of 3D Lossy Dielectric Objects Using Algebraic Reconstruction Techniques”, Proc. of the 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, UK, 1999, pp. 201-205.
[25] I. Barratt, Y. Yan, B. Byrne, M. Bradley, “Mass Flow Measurement of Pneumatically Conveyed Solids Using Radiometric Sensors”, Flow Measurement and Instrumentation, vol. 11, 2000, pp. 223-235.
[26] T. Dyakowski, R. Edwards, C. Xie, R. Williams, Application of Capacitance Tomography to Gas-Solids Flows, Chemical Engineering Science, vol. 52, nr. 13, 1997, pp. 2099-2110.
[27] H. Zangl, D.Watzenig, G. Steiner, A. Fuchs, H.Wegleiter, “Non-Iterative Reconstruction for Electrical Tomography Using Second Order Back-Projection”, Proc. of the 5th World Congress on Industrial Process Tomography, Bergen, Norway, 2007, pp. 216-223.
[28] W. Wu, A. Gerhart, Z. Chen, P. Dellenback, P. Agarwal, “A Device for Measuring Solids Flowrate in a Circulating Fluidized Bed”, Powder Technology, vol. 120, 2001, 151-158.
[29] A. Fuchs, H. Zangl, G. Brasseur, “A Sensor Fusion Conception for Precise Mass Flow Measurement of Powdery Bulk Material in Dense Phase Applications”, Proceedings of the 8th International Conference on Bulk Materials Storage, Handling and Transportation, Wollongong, Australia, July 5–8, 2004, pp. 366–370.
[30] A. Fuchs, H. Zangl, P. Wypych, “Signal Modelling and Algorithms for Parameter Estimation in Pneumatic Conveying”, Powder Technology, vol. 173, 2007, pp. 126-139.
[31] J. Dai, J. Grace, “A Model for Biomass Screw Feeding, Powder Technology”, 2007, Article in Press, DOI:10.1016/j.powtec.2007.10.032.
[32] A. Fuchs, H. Zangl, G. Brasseur, “Mass Flowmeter for Screw Conveyors Based on Capacitive Sensing”, Proc. of the IEEE Instrumentation and Measurement Technology Conference, Warsaw, Poland, 2007, 5 p.

EXTRA FILES

COMMENTS