CO2 sensing characteristics of Sm1-xBaxCoO3 (x = 0, 0.1, 0.15, 0.2) nanostructured thick film


Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic


eISSN: 1178-5608



VOLUME 1 , ISSUE 3 (September 2008) > List of articles

CO2 sensing characteristics of Sm1-xBaxCoO3 (x = 0, 0.1, 0.15, 0.2) nanostructured thick film

G.N. Chaudhari / P.R. Padole / S.V. Jagatap / M.J. Pawar

Keywords : SmCoO3, Nanostructures, Gas Sensitivity, Selectivity, EDTA-Glycol Method,

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 1, Issue 3, Pages 613-622, DOI:

License : (CC BY-NC-ND 4.0)

Published Online: 13-December-2017



SmCoO3 gas sensor has been developed with high sensitivity for CO2 gas by doping Ba. Nanostructured SmCoO3 and Sm1-xBaxCoO3 (x = 0, 0.1, 0.15, 0.2) were obtained by EDTAGlycol method. The operation temperature falls and sensitivity increases from 425 to 370OC
when Ba concentration in SmCoO3 changes from x = 0 to x = 0.1. Ag impregnation over Sm0.9Ba0.1CoO3 sensor, on exposure to CO2 at about 360OC showed an increased sensitivity as well as the response time also decreases. The possible CO2 sensing mechanism is proposed on the basis of available literatures.

Content not available PDF Share



[1]. D.H. Kim, J.Y. Yoon, H.C. Park, K.H. Kim, CO2 sensing characteristics of SnO2 thick film by coating lanthanum oxide, Sens. Actuators. B, 26 (2000) 61-66.
[2]. A. Marsal, A. Cornet, J.R. Morante, Study of the CO and humidity interference in La doped tin oxide CO2 gas sensors, Sens. Actuators. B, 94 (2003) 324-329.
[3]. T. Ishihara, K. Kometani, Y. Nishi, Y. Takita, Improved sensitivity of CuO-BaTiO3 capacitive-type CO2 sensor by additives, Sens. Actuators. B, 28 (1995) 49-54.
[4]. M.S. Lee, J.U. Meyer, A new process for fabricating CO2 sensing layers based on BaTiO3 and additives, Sens. Actuators. B, 68 (2000) 293-299.
[5]. D. B. Meadowcraft, Nature (London), 226 (1970) 847.
[6]. S. C. Sorenson, J. A. Wronkiewicz, L. B. Sis and G. P. Writz, Am. Ceram. Soc.,Bull., 53 (1974) 446.
[7]. Parkash, P. Ganguly, G. Ramarao, C. N. R. Rao, D. S. Rajoria and V. G. Bhide,Mater. Res. Bull., 9 (1974) 1173.
[8]. Susan George, B. Viswanathan, Co oxidation on LnCoO3 perovskite oxides: effect of initial total pressure and gas composition, surface technology, 19 (1983) 217-223.
[9]. Emilio Delgado, Carlos R. Michel, CO2 and O2 sensing behavior of nanostructured barium-doped SmCoO3, Materials letter, 60, 13-14, (2006) 1613-1616.
[10]. Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. J. Am. Chem. Soc. 128 (2006) 2115.
[11]. M.A. El-Sayed, Acc. Chem. Res. 34 (2001) 257.
[12]. C.J. Murphy, Science 298 (2002) 2139.
[13]. M. Penza, C. Martucci, G. Cassano, NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers, Sens. Actu. B, 50, (1998), 52.
[14]. S. V. Manorama, C. V. Gopal Reddy, V. J. Rao, X-ray photoelectron spectroscopic studies of noble metal incorporated BaSnO3-based gas sensors1, Appl. Surf. Sci., 174,(2001), 93.
[15]. M. S. Berberich, J. G. Zheng, U. Weimar, W. Gopel, N. Barsan, E. Pentia, A.Tomeacu, The effect of Pt and Pd surface doping on the response of nanocrystalline tin dioxide gas sensor to CO, Sens. Actu. B,31, (1996), pp.71–75.
[16]. F. Boccizzi, A. Chiorino, S. Tsubota, M. Haruta, An IR study of CO-sensing mechanism on Au/ZnO, Sens.Actuators B, 24–25, (1995), pp.540–543.
[17]. J. Tamaki, M. Akiyama, C. Xu, N. Miura, N. Yamazoe, Conductivity change of SnO2 with CO2 adsorption, Chem. Lett., (1990) 1243-1246.
[18]. P.E. Caro, J.O. Sawyer, L. Eyring, The infrared spectrum of rare earth carbonates,Spectr. Acta 28a (1971) 1167-1173.