HYDROGEN GAS SENSING PERFORMANCE OF Pt/SnO2 NANOWIRES/SiC MOS DEVICES

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

26
Reader(s)
50
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 1 , ISSUE 3 (September 2008) > List of articles

HYDROGEN GAS SENSING PERFORMANCE OF Pt/SnO2 NANOWIRES/SiC MOS DEVICES

M. Shafiei * / K. Kalantar-zadeh / W. Wlodarski / E. Comini / M. Ferroni / G. Sberveglieri / S. Kaciulis / L. Pandolfi

Keywords : Gas sensor, Hydrogen, Nanowires, SnO2, MOS, Schottky, XPS, TEM, SEM.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 1, Issue 3, Pages 771-783, DOI: https://doi.org/10.21307/ijssis-2017-319

License : (CC BY-NC-ND 4.0)

Published Online: 13-December-2017

ARTICLE

ABSTRACT

This paper presents material and gas sensing properties of Pt/SnO2 nanowires/SiC metal oxide semiconductor devices towards hydrogen. The SnO2 nanowires were deposited onto the SiC substrates by vapor-liquid-solid growth mechanism. The material properties of the sensors were investigated using scanning electron microscopy, transmission electron microscopy and X-ray
photoelectron spectroscopy. The current-voltage characteristics have been analyzed. The effective change in the barrier height for 1% hydrogen was found to be 142.91 meV. The dynamic response of the sensors towards hydrogen at different temperatures has also been studied. At 530°C, voltage shift of 310 mV for 1% hydrogen was observed.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] N. Yamazoe, "New approaches for improving semiconductors gas sensors " in Proc. 3rd International Meeting on Chemical Sensors, Cleveland, OH, U.S.A., 1990, pp. 3-8.
[2] N. Yamazoe, "New approaches for improving semiconductor gas sensors," Sensors and Actuators B: Chemical, vol. 5, pp. 7-19, 1991.
[3] N. Barsan, M. Schweizer-Berberich, and W. Gopel, Fresenius Journal of Analytical Chemistry, vol. 365, pp. 287-304, 1999.
[4] E. Comini, "Metal oxide nano-crystals for gas sensing," Analytica Chimica Acta, vol. 568, pp.28-40, 2006.
[5] K. Kalantar-zadeh and F. Benjamin, Nanotechnology-Enabled Sensors. Springer, 2008.
[6] A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-zadeh,"Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing,"IEEE Sensors Journal, vol. 7, pp. 919-924, 2007.
[7] E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z. L. Wang, "Stable and highly sensitive gas sensors based on semiconductiong oxide nanobelts," Appl. Phys. Lett, vol. 81, pp. 1869-1871, 2002.
[8] D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, and C. Zhou, "Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices," NanoLetters, vol. 4,no. 10, pp. 1919-1924, 2004.
[9] K. M. Sawicka, A. K. Prasad, and P. I. Gouma, "Metal oxide nanowires for use in chemical sensing applications," Sensor Letter, vol. 3, no. 1, pp. 1-5, 2005.
[10] H. Y. Dang, J. Wang, and S. S. Fan, "The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres," Nanotechnology, vol. 14, pp. 738-741, 2003.
[11] A. L. Spetz, P. Tobias, A. Baranzahi, P. Martensson, and I. Lundstrom, "Current status of silicon carbide based high-temperature gas sensors," IEEE T Electron Dev, vol. 46, pp. 561-566,1999.
[12] A. Arbab, A. Spetz, and I. Lundstrom, "Evaluation of Gas Mixtures with High-Temperature Gas Sensors Based on Silicon Carbide," Sensors and Actuators B, vol. 18-19, pp. 562-565, 1994.
[13] S. Kandasamy, A. Trinchi, W. Wlodarski, E. Comini, and G. Sberveglieri, "Study of Pt/TiO2/SiC schottky diode based gas sensor," in Proc. IEEE Sensors Conf. 2004; vol. 2, pp.T2P-P.18, 2004.
[14] S. Kandasamy, W. wlodarski, A. Holland, S. Nakagomi, and Y. Kokubun, "Electrical characterization and hydrogen gas sensing properties of a n-ZnO/p-SiC Pt-gate metal semiconductor field effect transistor," Applied Physics Letters, vol. 90, p. 064103, 2007.
[15] A. Trinchi, W. Wlodarski, and Y. X. Li, "Hydrogen sensitive Ga2O3 Schottky diode sensor based on SiC," Sensors and Actuators B, vol. 100, pp. 94-98, 2004.
[16] S. Nakagomi, K. Okuda, and Y. Kokubun, "Electrical properties dependent on H2 gas for new structure diode of Pt-thin WO3-SiC," Sensors and Actuators B: Chemical, vol. 96, pp. 364-371, 2003.
[17] G. W. Hunter, P.G. Neudeck, M. Gray, D. Androjna, L-Y. Chen, R. W. Hoffman, C.C. Liu,and Q. H. Wu, "SiC-based gas sensor development," Mater. Sci. Forum 338-342 (part 2), pp.1439-1442, 2000.
[18] V. Demarne and R. Sanjine, "Thin film semiconducting metal oxide gas sensors," Gas Sensors, edited by G. Sberveglieri (Kluwer Academic Publishers, Netherlans, 1992), pp. 89-116,Ch. 3.
[19] U. Hoefer, J. Frank, and M. Fleischer, "High temperature Ga2O3-gas sensors and SnO2-gas sensors: a comparison," Sensors and Actuators B: Chemical, vol. 78, pp. 6-11, 2001.
[20] M. Law, H. Kind, B. Messer, F. Kim, and P. Yang, "Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature," Angew. Chem. Int. Ed, vol. 41, pp. 2405-2408, 2002.
[21] A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, "Detection of CO and O2 using tin oxide nanowire sensors," Advanced Materials, vol. 15, pp. 997-1000, 2003.
[22] F. Li, J. Xu, X. Yu, L. Chen, J. Zhu, Z. Yang, and X. Xin, "One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles," Sensors and Actuators B:Chemical, vol. 81, pp. 165-169, 2002.
[23] G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, and A. Vomiero, "Synthesis and characterization of semiconducting nanowires for gas sensing," Sensors and Actuators B: Ch.emical, vol. 121, pp. 208-213, 2007.
[24] S. Bianchi, E. Comini, M. Ferroni, G. Sberveglieri, L. Pandolfi, S. Kaciulis, W. Wlodarski, M. Shafiei, and S. Kandasamy, "Preparation and characterization of tin oxide nano;wires on SiC," presented at the 14th Int. Conf. on Solid-State, Actuators and Microsystems, Lyon, France,June 2007.
[25] V.M. Jiménez, J.A. Meíjas, J.P. Espinós, A.R. González-Elipe, "Interface effects for metal oxide films deposited on another metal oxide", Surface Science, vol. 366, pp. 545-555, 1996.
[26] V.M. Jiménez, J.P. Espinós, A.R. González-Elipe, "Interface effects for metal oxide films deposited on another metal oxide", Surface Science, vol. 366, pp. 556-563, 1996.
[27] S. Kaciulis, L. Pandolfi, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, G. Sberveglieri, M.Shafiei, S. Kandasamy, and W. Wlodarski, "Nanowires of metal oxides for gas sensing applications," Surf. Interface Anal., vol. 39, 2008, in press.
[28] I. Lundstrom, M. S. Shivaraman, and C. M. Svensson, "A hydrogen-sensitive Pd-gate MOS transistor," J. Appl. Phys., vol. 46 (9), pp. 3876-3881, 1975.
[29] I. Lundstrom, M. Armgarth, and L. G. Petersson, "Physics with catalytic metal gate chemical sensors," Crc Critical Reviews in Solid State and Materials Sciences, vol. 15, pp. 201-278, 1989.
[30] S. Kandasamy, A. Trinchi, W. Wlodarski, E. Comini, and G. Sberveglieri, "Hydrogen and hydrocarbon gas sensing performance of Pt/WO3/SiC MROSiC devices," Sensors and Actuators B: Chemical, vol. 111-112, pp. 111-116, 2005.
[31] S. M. Sze, Physics of Semiconductor Devices. 2nd ed, Wiley, New York, 1981.
[32] A. Trinchi, W. Wlodarski, Y. X. Li, G. Faglia, and G. Sberveglieri, "Pt/Ga2O3/SiC MRISiC devices: a study of the hydrogen response," J. phys. D: Appl. Phys, vol. 38, pp. 754-763, 200

EXTRA FILES

COMMENTS