Implementation of linear trace moisture sensor by nano porous thin film moisture sensor and NLAmp


Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic


eISSN: 1178-5608



VOLUME 1 , ISSUE 4 (December 2008) > List of articles

Implementation of linear trace moisture sensor by nano porous thin film moisture sensor and NLAmp

Dilip Kumar Ghara * / Debdulal Saha / Kamalendu Sengupta

Keywords : Differential slope, Amplifier gain control, Analog multiplexer, Trace moisture sensor, PWM.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 1, Issue 4, Pages 955-969, DOI:

License : (CC BY-NC-ND 4.0)

Published Online: 02-November-2017



Almost all type of moisture sensors has a non-linear response. With out linearization it is difficult to apply such a non-linear sensor in electronics circuits, specially in analog electronics. Non linear sensor and transducers characteristic can be linearized using analog electronics or digital electronics. In this paper a method of linearization of such non-linear sensors characteristics using analog electronics is described. Theoretical explanation of the methods and its verification by experiment is stated in this paper. It may possible to linearize any non linear characteristic using this method. We use thin film nano porous trace humidity sensor as a non linear device for the circuit justification. The fabrication process of the sensor is also described in this paper.

Content not available PDF Share



[1] D. K. Ghara, D. Saha and K. Sengupta, A Dew Point Meter Comprising a Nanoporous Thin Film Alumina Humidity Sensor with a Linearizing Capacitance Measuring Electronics, Sensors & Transducers Journal. 88 (2) (2008) p. 59-65
[2] Debdulal Saha, Kamalendu Sengupta, Trace moisture response property of thin film nano porous g- alo for industrial application23, Sensors & Transducers Journal, 85 (11) (2007) p.1714.
[3] Debdulal Saha, Santanu Das, Kamalendu Sengupta, Development of commercial nanoporous trace moisture sensor following sol–gel thin film technique, Sensors and Actuators B 128 (2008) 383–387.
[4] Pi-Guey Su, Chao-Shen Wang, Novel flexible resistive-type humidity sensor, Sensors and Actuators B 123 (2007) 1071–1076.
[5] Jyoti Shah, R.K. Kotnala, Bhikham Singh, Hari Kishan, Microstructure-dependent humidity sensitivity of porous MgFe2O4–CeO2 ceramic, Sensors and Actuators B 128 (2007) 306–311.
[6] Zbigniew Moron, Can analog circuit still increase sensors’ smartness?, Sensors and Actuators A 68 (1998) 474-479.
[7] I.B. Vinnik, I.V. Uvarova, V.S. Zenkov, Ceramic humidity sensor based on zirconium dioxide, Powder Metall, Met. Ceram. 37 (1999) 632–634.
[8] Kuyyadi P. Biju ., Mahaveer K. Jain, Sol–gel derived TiO2:ZrO2 multilayer thin films for humidity sensing application, Sensors and Actuators B 128 (2008) 407–413
[9] T. Nitta, S. Hayakawa, Ceramic humidity sensors, IEEE Trans. Comp. Hyb. Manuf. Tech. CHMT 3 (2) (1980) 237–243.
[10] H. Shibata, M. Ito, M. Asakursa, K. Waltanabe, A digital hygrometer using a polyimide film relative humidity sensor, IEEE Trans. Instrum. Meas. 45 (2) (1996) 564-569.
[11] P.J. Schubert, J.H. nevin, A polyimide-based capacitive humidity sensor, IEEE Trans.Electron devices ED-32 (1985) 1220-1223.
[12] J. Das. S. Dey, S. M. Hossian, Z. M. Rittersma, H. Saha, A hygrometer comprising a porous silicon humidity sensor with phase-detection electronics, IEEE Sensor Journal, Vol. 3, No. 4, 2003, pp. 414-420.
[13] G. Banerjee and K. Sengupta, Pore size optimisation of humidity sensor: a probabilistic approach, Sensors and Actuators. vol. 86, B 2002, p. 34-41
[14] Debdulal Saha, Kamalendu Sengupta, Nano Structure Metal Oxide Ceramic Thin Film for Detection of Trace Moisture Using CMOS Timer, Sensors & Transducers Journal, 80 (6) (2007) p. 1239.
[15] MFL Johnson and J. Mooi, The Origin and Types of Pores in Some Alumina Catalysts, J. Catal., 10, 342–54 (1968
[16] H. Knozinger and P. Ratnasamy, Catalytic aluminas: surface models and characterization of surface sitesCatal Rev. Sci. Eng. 17 (1978) p. 31.
[17] I. F. Chang, W. E. Howard, IEEE Trans. Electron. Devices ED. 22 (1975) p. 749.
[18] K. Nishio, K. Iwata, H. Masuda, Fabrication of nanoporous WO 3 membranes and their electrochromic properties, Electrochem Solid State Lett. 6 (2003) p. 21.
[19]. J-I Yang, H. Lim, S. D. Han, Influence of binders on the sensing and electrical characteristics of WO3-based gas sensors, Sens. Actuators B. 60 (1999) p. 71.
[20] Lenward Seals, James L. Gole, Laam Angela Tse and Peter J. Hesketh, Rapid, reversible, sensitive porous silicon gas sensor, J. Appl. Phys. 91, (2002) p. 2519.
[21] K.S. Shamala, L.C.S. Murthy, M.C. Radhakrishna, K. Narasimha Rao, Characterization of Al2O3 thin films prepared by spray pyrolysis method for humidity sensor, Sensors and Actuators A 135 (2007) 552–557.
[22] Chengbin Jing, Xiujian Zhao, Yongheng Zhang, Sol–gel fabrication of compact, crack-free alumina film, Materials Research Bulletin 42 (2007) 600–608.
[23] B.E. Yoldas, A transparent porous alumina, Jr. of Mater. Sci. 10 (1975) p. 1856.
[24] C. Rameshu, A. P. Shivaprasad, Microprocessor-based temperature indicator using platinum resistance as the sensor, International Journal of Electronics, Vol. 63, 6 (1987), p. 891.
[25] Nelson J. Groom and, James B. Miller, A Microprocessor-Based Lookup Bearing Table Approach for Magnetic Linearization, NASA Technical Paper 1838, MAY 1981.