Professor Subhas Chandra Mukhopadhyay
Exeley Inc. (New York)
Subject: Computational Science & Engineering, Engineering, Electrical & Electronic
eISSN: 1178-5608
SEARCH WITHIN CONTENT
Allal LARBI * / Bachir DJEDOU / Layachi BENNACER / Mounir BOUSBIA-SALAH
Keywords : Phthalocyanines, thin films, conductivity variations, gas concentration, doping, adsorption, diffusion, reversibility, charge transfer, gas sensor, air pollution.
Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 2, Issue 3, Pages 448-462, DOI: https://doi.org/10.21307/ijssis-2017-360
License : (CC BY-NC-ND 4.0)
Published Online: 03-November-2017
This paper describes the development of a new gas sensor device using some electroactive polymers in thin layers. The poly(fluoro-aluminium phthalocyanine) powder, (AlPcF)n, has been synthesized, then deposited by vacuum evaporation on alumina or silicon substrates in the form of thin films with control of the deposition rate. (AlPcF)n thin layers are doped by NO2 or O2 diluted at various concentrations in N2 and their conductivity variations are studied as a function of time, temperature and doping gas concentration. The doping process is reversible, and the experimental results are interpreted in terms of adsorption and diffusion of the gas in the polymer, charge transfer, and transport of the injected carriers in the polymer chain. These experimental results and previous studies on other polymers and oxidizing gases demonstrate the potentiality of such materials to be used as sensitive part of gas sensors.
[1] M. Bouvet, A. Pauly. “Molecular Semiconductors-Based Gas Sensors”. Encyclopedia of Sensors. 2006, Vol. 6, pp. 227-269.
[2] E. A. Silinsh, “Organic Molecular Crystals: Their Electronic States” (H.-J. Queisser, Ed.). Springer Verlag, Berlin, 1980.
[3] J. Simon and J.-J. André, “Molecular Semiconductors” (J.-M. Lehn, C. W. Rees, Eds.). Springer Verlag, Berlin, 1985.
[4] M. Pope and C. E. Swenberg, “Electronic Processes in Organic Crystals”. Oxford University Press, Oxford, 1982.
[5] M. Pope and C. E. Swenberg, “Electronic Processes in Organic Crystals and Polymers”, 2nd Edition. Oxford University Press, Oxford, 1999.
[6] G. Guillaud, J. Simon and J.-P. Germain, “Coord. Chem. Review” 1998, pp. 178-180.
[7] R. Zhou, F. Josse, W. Göpel, Z. Z. Oztuk and O. Bekaroglu, “Applied Organometallic Chemistry”, 10, 1996, pp. 557-577.
[8] C. J. Liu, C. H. Peng, Y. H. Ju, J. C. Hsieh. “Titanyl phthalocyanine gas sensor for NO2 detection”, Sensors and Actuators B, 52, 1998, pp. 264-269.
[9] A. Capobianchi, A. M. Paoletti, G. Pennesi, G. Rossi. “Effect of nitrogen dioxide on titanium biphthalocyanine thin films”, Sensors and Actuators B, 48, 1998, pp. 333-338.
[10] S. Anuradha and K. Rajanna, “A novel method for the improvement in thermoelectric property of tin oxide thin films and its application in gas sensing”, International Journal on Smart Sensing and Intelligent Systems, Vol. 1, No. 2, June 2008, pp. 498-511.
[11] W. C. Maskell, “Advanced Zirconia Gas Sensors” in “Techniques and Mechanisms in Gas Sensing” (P. T. Moseley, J. Norris, and D. E. Williams, Eds.) Hilgen, Bristol, 1991.
[12] J. P. Linsky, T. R. Paul, R. S. Nohr, and M. E. Kenney, “Inorg. Chem.”, 19, 1980, 3131.
[13] D. C. Weber, P. Brant, R. S. Nohr, S. G. Haupt, and K. J. Wynne, “J. Phys.”, 44, 1983, 639.
[14] R. S. Nohr, and K. J. Wynne, “J. Chem. Soc. Chem. Comm.”, 1981, 1210.
[15] J. Brunet, “Elaboration, étude et optimisation de capteurs de gaz à phtalocyanines pour la pollution atmosphérique”, Thèse de Doctorat d’Université, Université Blaise Pascal (Clermont- Ferrand II), France, 2003.
[16] Q. Zhou, and R. D. Gould, “A study of the response rate to nitrogen dioxide exposure in metal phthalocyanine thin film sensors”, Thin Solid Films, 317, 1998, pp. 436-439.
[17] E. Van Faassen, and H. Kerp, “Explanation of the low oxygen sensitivity of thin film phthalocyanine gas sensors”, Sensors and Actuators B, 88, 2003, pp. 329-333.
[18] M. Passard, C. Maleysson, A. Pauly, S. Dogo, J-P. Germain, and J-P. Blanc, “Gas sensitivity of phthalocyanine thin films”, Sensors and Actuators B, 18-19, 1994, pp. 489-492.
[19] G.N. Chaudhari, P.R. Padole, S.V. Jagatap, M.J. Pawar, “CO2 sensing characteristics of Sm1-xBaxCoO3 (x = 0, 0.1, 0.15, 0.2) nanostructured thick film” International Journal on Smart Sensing and Intelligent Systems, Vol. 1, No. 3, September 2008, pp. 613-622.
[20] E. Lewis and Al., “On board exhaust emission monitoring of road vehicles - a high tech solution to pollution from traffic?” International Journal on Smart Sensing and Intelligent Systems, Vol. 1, No. 1, March 2008, pp. 176-186.
[21] B. Fauroux, A. Griemfield, G. Tournier, M. Le Moullec, F. Squinazi, and B. Festy, “Pollution Atmosphérique”, 134, 1992, pp. 26-30.
[22] N. Carslaw, “Atmospheric Environment”, 37, 2003, pp. 5645-5646.
[23] J. Brunet, J.-P. Germain, A. Pauly, B. Lauron, and C. Varenne, “Methodology of Measurement for Phthalocyanines Gas Sensors Dedicated to the Detection of Ozone and Nitrogen Dioxide. Results in Urban Air Pollution Context” in “Sensors for Environmental Control”, World Scientific Publishing, Singapore, 2003, pp. 188-192.
[24] J. Brunet, L. Talzac, V. Battut, A. Pauly, J.-P. Blanc, J.-P. Germain, S. Pellier and C. Soulier, “Thin Solid Films”, 391, 2001, pp. 308-313.
[25] J. Brunet , V. Parra Garcia, A. Pauly, C. Varenne, B. Lauron. “An optimised gas sensor microsystem for accurate and real-time measurement of nitrogen dioxide at ppb level” Sensors and Actuators B, 134, 2008, pp. 632-639.