DESIGN OF VIBRATION-BASED MINIATURE GENERATOR USING PIEZOELECTRIC BENDER

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

4
Reader(s)
6
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 3 , ISSUE 3 (September 2010) > List of articles

DESIGN OF VIBRATION-BASED MINIATURE GENERATOR USING PIEZOELECTRIC BENDER

Wei Li / Tzong-Shi Liu / Heng-I Lin / Yi-Jeng Tsai

Keywords : Miniature Generator, Piezoelectric Bender, Energy Harvesting.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 3, Issue 3, Pages 550-572, DOI: https://doi.org/10.21307/ijssis-2017-408

License : (CC BY-NC-ND 4.0)

Published Online: 13-December-2017

ARTICLE

ABSTRACT

For the use of green energy and ubiquitous computing, this study investigates miniature electric generators that are constructed with piezoelectric benders. Electric power is generated by vibratory deformation of piezoelectric benders. Three different designs of piezoelectric generators are created and compared in this study by using mechanics analysis. The result shows that the cantilever design yields more power than symmetric and airfoil designs. Experimental results show that generated voltage rises with not only attached point masses, but also the swing frequency of a swing arm, to which the proposed piezoelectric generator is attached. In addition, At 6.5 Hz swing frequency, the maximum power 0.3μW is generated.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] S. Roundy, P. K. Wright and K. S. J. Pister, Micro-Electrostatic “Vibration-to-Electricity Converters”, ASME International Mechanical Engineering Congress & Exposition, vol. 18,pp.1823-1830. 2002.
[2] C. B. Williams and R. B. Yates, “Analysis of a Micro-Electric Generator for Microsystems”, Sensors and Actuators, vol. 52, pp. 8-11, 1996.
[3] A. E. Shahat, A. Keyhani and H. E. Shewy, “Micro-generator Design for Smart Grid System”, International Journal on Smart Sensing and Intelligent Systems, vol. 3, no. 2, pp.176-216, June 2010.
[4] S. Neduncheliyan, M. Umapathy and D. Ezhilarasi, “Simultaneous Periodic Output Feedback Control for Piezoelectric Actuated Structures Using Interval Methods”, International Journal on Smart Sensing and Intelligent Systems, vol. 2, no. 3, pp. 417-431,September 2009.
[5] V. T. Rathod and D. R. Mahapatra, “Lamb Wave Based Monitoring of Plate-Stiffener Deboding Using a Circular Array of Piezoelectric Sensors”, International Journal on Smart Sensing and Intelligent Systems, vol. 3, no. 1, pp. 27-44, March 2010.
[6] E. Matsumoto and Y. Komagome, “Intelligent Structural Elements Covered by Piezoelectric High-Polymer Film”, International Journal on Smart Sensing and Intelligent Systems, vol. 1, no. 2, pp. 420-429, June 2008.
[7] T. Starner, “Human-powered Wearable Computing”, IBM Systems Journal, vol. 35, pp.1898-1902, 1996.
[8] N. S. Shenck and J. A. Paradiso, “Energy Scavenging with Shoe-Mounted Piezoelectrics”, IEEE Micro, vol. 21, pp. 30-42, 2001.
[9] C. Alippi and C. Galperti, “An Embedded Wireless System for Estimating the Exposition Risk in First Emergency Management”, International Journal on Smart Sensing and Intelligent Systems, vol. 1, no. 3, pp. 592-612, September 2008.
[10] S. Roundy and P. K. Wright, “A Piezoelectric Vibration Based Generator for Wireless Electronics”, Smart Materials and Structures, vol. 13, pp 1131-1142, 2004.
[11] G. B. Hmida, A. L. Ekuakille, A. Kachouri, H. Ghariani, and A. Trotta, “Extracting Electric Power from Human Body for Supplying Neural Recording System”, International Journal on Smart Sensing and Intelligent Systems, vol. 2, no. 2, pp. 229-245, June 2009.
[12] E. Koutroulis, K. Kalaitzakis and N. C. Voulgaris, “Development of a Microcontroller-Based Photovoltaic Maximum Power Point Tracking Control System”, IEEE Transactions on Power Electronics, vol. 16, pp. 46–54, 2001.
[13] G. K. Ottman, H. F. Hofmann, A. C. Bhatt and G. A. Lesieutre, “Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply”, IEEE Transactions on Power Electronics, vol. 17, pp. 669–676, 2002.
[14] G. K. Ottman, H. F. Hofmann and G. A. Lesieutre, “Optimized Piezoelectric Energy Harvesting Circuit Using Step-Down Converter in Discontinuous Conduction Mode”, IEEE Transactions on Power Electronics, vol. 18, pp. 696–703, 2003.
[15] K. Makihara, J. Onoda and T. Miyakawa, “Low Energy Dissipation Electric Circuit for Energy Harvesting”, Smart Materials and Structures, vol. 15, pp. 1493–1498, 2006.
[16] H. A. Sodando, D. J. Inman and G. Park, “Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries”, Journal of Intelligent Material Systems and Structures, vol. 16, pp. 799-807, 2005.
[17] H. A. Sodando, D. J. Inman and G. Park, “Generation and Storage of Electricity form Power Harvesting Device”, Journal of Intelligent Material Systems and Structures, vol. 16, pp.67-75, 2005.
[18] D. R. Cook and C. W. Young, “Advanced Mechanics of Materials”, Macmillan Publishing Company, 1985.
[19] G. W. Taylor, J. J. Gagnepain, T. R. Meeker, T. Nakamura and L. A. Shuvalov,“Piezoelectricity”, Gordon and Breach, Science Publisher, Inc., 1985.
[20] C. M. Harris, “Shock and Vibration Handbook”, McGraw Hill 3rd, 1987.

EXTRA FILES

COMMENTS