0.35 μm CMOS OPTICAL SENSOR FOR AN INTEGRATED TRANSIMPEDANCE CIRCUIT

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

9
Reader(s)
9
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 4 , ISSUE 3 (September 2011) > List of articles

0.35 μm CMOS OPTICAL SENSOR FOR AN INTEGRATED TRANSIMPEDANCE CIRCUIT

H. Escid * / M. Attari * / M. Ait aidir * / W. Mechti *

Keywords : CMOS technology, Integrated photodiode, SML photodiode, Transimpedance, bandwidth enhancement, shunt and series peaking

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 4, Issue 3, Pages 467-481, DOI: https://doi.org/10.21307/ijssis-2017-451

License : (CC BY-NC-ND 4.0)

Received Date : 05-July-2011 / Accepted: 18-August-2011 / Published Online: 01-September-2011

ARTICLE

ABSTRACT

This paper presents an integrated optical receiver which consists of an integrated photodetector, and a transimpedance circuit. A series inductive peaking is used for enhancing the bandwidth. The proposed structure operates at a data rate of 10 Gb/s with a BER of 10-20 and was implemented in a 0.35 μm CMOS
process.
The integrated photodiode has a capacitance of 0.01 pF which permits to the structure to achieve a wide bandwidth (5.75 GHz) with only one inductor before the last stage; hence a smaller silicon area is maintained. The proposed TIA has a gain of 36.56 dBΩ (67.57 KΩ), and an input courant noise level of about
25.8 pA/Hz0.5. It consumes a DC power of 87.4 mW from 3.3 V supply voltage.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] M. Li, B. Hayes-Gill, I. Harrison, 6 GHz transimpedance amplifier for optical sensing system in low cost 0.35 μm CMOS. Electronics letters, 42,1278-1279.
[2] D. Coppée, J. Genoe, J.H. Stiens, R.A. Vounckx, M. Kuijk, “Calculation of the Current Response of the Spatially Modulated Light CMOS Detector,” IEEE Transactions on Electron Devices, vol.48,pp. 1892-1902, September 2001.
[3] T. K. Woodward and Ashok V. Krishnamoorthy, 1-Gb/s Integrated Optical Detectors and Receivers in Commercial CMOS Technologies, IEEE Journal of Selected Topics in Quantum Electronics, vol.5, no. 2, March/April 1999.
[4] Sunderarajan S. Mohan, Maria del Mar Hershenson, Stephen P. Boyd, and Thomas H. Lee,Bandwidth Extension in CMOS with Optimized On-hip Inductors, IEEE J. Solid-State Circuits,Vol. 35, No 3, Marsh 2000.
[5] Natalie Wong, CMOS Integrated PhotoDiode and Low Voltage Tranimpedance Amplifier in SiOEIC Application, university of Toronto, available from http:// www.eecg.toronto.edu /~kphang/ece1371/ pd_tia.pdf
[6] Sima Dimitrijev, Understanding Semiconductor Devices, Oxford university press, 2000.[7] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge, U.K.:Cambridge Univ. Press, 1998.
[7] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge, U.K.:Cambridge Univ. Press, 1998.
[8] S. J. Sim, J. M. Park, S. M. Park, A 1.8 V, 60 dB Ohm 11 GHz transimpedance amplifier with strong immunity to input parasitic capacitance, IEEE International Symposium on Circuits and Systems (ISCAS), May 2006.
[9] H. Escid, M. Attari, Low Noise and High bandwidth 0.35 μm CMOS Transimpedance Amplifier, Proceedings of International Conference on Microelectronics (ICM), Marrakech Morocco, December 2009. ieeexplore.ieee.org/xpls/abs_all.jsp? arnumber = 5418634
[10] Sanz, M.T. del Pozo, J.M.G. Celma, S. Sarmiento, 50th Midwest Symposium on Circuits and Systems, MWSCAS 2007. ieeexplore.ieee.org/ie l5 / 4483493 / 4488527 / 04488587.pdf ?arnumber.
[11] M. Ingels, G. Van der Plas, J. Crols and M. Steyaert, A CMOS 18THz 240Mb/s transimpedance amplifier and 155Mb/s LED-driver for low cost optical fiber links, IEEE J. Solid-State Circuits 29 (1994) 1552–1559.
[12] D. M. Pietruszynski. J. M. Steininger and E. J. Swanson, A 50Mbit/s CMOS monolithic optical receiver, IEEE J. Solid-State Circuits 23 (1988) 1426–1433.
[13] Hsu .C, Wu .J .A, 125-MHz CMOS switched resistor programmable gain amplifier, IEEE J.Solid State Circuits, 2003, 38 : 1663-1670.
[14] A. Abidi, On the noise optimum of gigahertz FET transimpedance amplifier, IEEE J. Solid-State Circuits 22 (1987) 1207–1209.
[15] M. Ingels and M. Steyaert, A 1 Gb/s, 0.7 μm CMOS optical receiver with full rail-to-rail Swanson, A 50 Mbit/s CMOS monolithic optical receiver, IEEE J. Solid-State Circuits 23 (1988),pp. 1426 - 1433.
[16] Van Wyk, E., Design of an integrated optical receiver in a standard CMOS process, EUROCON 2003 Ljubljana, Slovenia, vol.2, pp. 427-431, 22-24 Sept. 2003.
[17] Austria Micro Systems (AMS), 0.35 um CMOS C35 Process Parameters ENG-182, Revision #2.0, 2003
[18] Chen, Y-J. A integrated CMOS optical receiver wih clock and data recovery circuit, MSc. thesis, University of pretoria, South Africa, Aug. 2005.

EXTRA FILES

COMMENTS