Copper (II) oxide thin film for methanol and ethanol sensing


Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic


eISSN: 1178-5608



VOLUME 4 , ISSUE 4 (December 2011) > List of articles

Copper (II) oxide thin film for methanol and ethanol sensing

Mitesh Parmar * / K. Rajanna *

Keywords : Copper (II) Oxide thin films, sputtering, gas sensing, response time and recovery time.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 4, Issue 4, Pages 710-725, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 01-November-2011 / Accepted: 24-November-2011 / Published Online: 06-December-2011



A nanostructured copper (II) oxide film deposited by reactive DC-magnetron sputtering technique, has been studied for static sensor response towards methanol and ethanol by operating temperature and analyte concentration modulations. The optimum operating temperature (Topt) for the sensing of methanol and ethanol is observed to be 350 ˚C and 400 ˚C, respectively. The maximum sensitivity observed for 2500 ppm methanol and ethanol is 29% and 15.4% respectively. Another important observation is that the sensitivity time reduces with analyte concentrations, where as recovery time increases. The response time of 2500 ppm methanol and ethanol is 235 s and 247 s correspondingly.

Content not available PDF Share



[1] W. Brattain and J. Bardeen, “Surface properties of Germanium”, Bell Syst. Tech. J., Vol. 32, 1953, pp. 1–41.
[2] G. Heiland, “Zum Einfluss von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zn-O-Kristallen”, Z. Physik, Vol. 138, 1954, pp. 459–464.
[3] A. Bielanski, J. Derren and J.Haber, “Electric conductivity and catalytic activity of semiconducting oxide catalysts”, Nature, Vol. 179, 1957, pp. 668–669.
[4] T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, “A new detector for gaseous components using semiconducting thin films”, Anal. Chem., Vol. 34, 1962, pp. 1502–1503.
[5] G. Korotcenkov, “Metal oxides for solid-state gas sensors: What determines our choice?”, Mater. Sci. Eng. B, Vol. 139, 2007, pp. 1–23.
[6] A. Chowdhuri, V. Gupta and K. Sreenivas, “Fast response H2S gas sensing characteristics with ultra-thin CuO islands on sputtered SnO2”, Sens. Actuators B, Vol. 93, 2003, pp. 572–579.
[7] X. Zhou, Q. Cao, H. Huang, P. Yang and Y. Hu, “Study on sensing mechanism of CuO–SnO2 gas sensors”, Mater. Sci. Eng. B, Vol. 99, 2003, pp. 44–47.
[8] S. T. Jun and G. M. Choi, “CO gas-sensing properties of ZnO/CuO contact ceramics”, Sens. Actuators B, 17, Vol. 1994, pp. 175–178.
[9] K. K. Baek and H. L. Tuller, “Atmosphere sensitive CuO/ZnO junctions”, Solid State Ionics, Vol. 75, 1995, pp. 179–186.
[10] C. Wang, X.Q. Fu, X. Y. Xue, Y. G. Wang and T. H. Wang, “Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption”, Nanotechnology, Vol. 18, 2007, pp. 145506–14510.
[11] J. Bardeen, W. H. Brattain and W. Shockley, “Investigation of Oxidation of Copper by Use of Radioactive Cu Tracer”, J. Chem. Phys., Vol. 14, 1946, pp. 714.
[12] P. T. Moseley, “Solid state gas sensor”, Meas. Sci. Technol., Vol. 8, 1997, pp. 223–237.
[13] M. J. Madou and S. R. Morrison, “Chemical Sensing with Solid State Devices”, Academic Press, Inc./Harcourt Brace Jovanovich Publ., Boston, NY, 1987.
[14] T. Ishihara, M. Higuchi, T. Takagi, M. Ito, H. Nishiguchi and Y. Takita, “Preparation of CuO thin films on porous BaTiO3 and application as a CO2 sensor”, J. Mater. Chem., Vol. 8(9) 1998, pp. 2037–2042.
[15] M. Parmar, N. Gokhale and K. Rajanna, “Nanostructured Copper(II) oxide thin film for alcohol sensing”, Proceedings of IEEE International Instrumentation Measurement Technology Conference (I2MTC)– 2009 pp. 337–340.
[16] T. Nakamoto, M. Yosihioka, Y. Tanaka, K. Kobayashi, T. Moriizumi, S. Ueyama and W. S. Yerazunis, “Colorimetric method for odor discrimination using dye-coated plate and multiLED sensor”, Sens. Actuators B, Vol. 116, 2006, pp. 202–206.
[17] P. Scherrer, “Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen”, 1918, pp. 98−100.
[18] A. Patterson, “The Scherrer formula for X-Ray particle size determination”, Phys. Rev., Vol. 56, 1939, pp. 978−982.
[19] T. H. Fleisch and G. J. Mains, “Reduction of copper oxides by ultraviolet radiation and atomic hydrogen studied by XPS”, Appl. Surface Sci., Vol. 10, 1982, pp. 51–62.
[20] N. S. Mclntyre and M. g. Cook, “X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel and copper”, Anal. Chem., Vol. 47, No. 13, 1975, pp. 2208–2213.
[21] K. Hirokawa, F. H. Honda and S. M. Oku, “On the surface chemical reactions of metal and oxide XPS samples at 300–400° at a high vacuum produced by oil diffusion pumps”, J. Electron Spectrosc., Vol. 6, 1975, pp. 333–345.
[22] N.S. Ramgir, S. Kailasa Ganapathi, M. Kaur, N. Datta, K. P. Muthe, D. K. Aswal, S. K. Gupta and J. V. Yakhmi, Sub-ppm H2S sensing at room temperature using CuO thin films, Sens. Actuators B, Vol. 151, 2010, pp. 90–96.
[23] E. M. Cordi, P. J. O’Neill and J. L. Falconer, “Transient oxidation of volatile organic compounds on a CuO/Al2O3 catalyst”, Appl. Catal. B, Vol. 14, 1997, pp. 23–36.
[24] V. Figueiredo, E. Elangovan, G. Concalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper”, Applied Surface Science, Vol. 254, 2008, pp. 3949‐3954.
[25] L. Zhou, S.Günther, D. Moszynski, and R. Imbihl, “Reactivity of oxidized copper surfaces in methanol oxidation”, J. Catalysis, Vol. 235, No. 2, 2005, pp. 359–367.